从测井资料中确定非常规致密油碳酸盐岩岩石组构数的新方法

Brenda Azuara Diliegros, R. Aguilera
{"title":"从测井资料中确定非常规致密油碳酸盐岩岩石组构数的新方法","authors":"Brenda Azuara Diliegros, R. Aguilera","doi":"10.2118/208893-ms","DOIUrl":null,"url":null,"abstract":"\n This paper develops a new method for estimation of rock fabric number (RFN) from well logs in unconventional tight oil carbonates with less than 0.1 md. The objective is to investigate the oil potential of a Middle Cretaceous tight carbonate in Mexico. Development of a method for these conditions is challenging as the current approach developed by Lucia (1983) has been explained for carbonates with more than 0.1md.\n The method is calibrated with data from cores and cuttings and allows estimating the presence of grainstone, packstone and wackstone rocks in unconventional tight carbonates from well logs. A crossplot of RFN vs rp35 (pore throat radius at 35% cumulative pore volume) permits delimiting intervals with good production potential that is supported by well testing data. Information for analysis of the Mexican carbonate comes from well logs of 9 wells and 2 re-entry wells, four buildup tests and a limited amount of core and drill cuttings information. All data were provided by a petroleum company and have been used, for transparency, without any modifications.\n An unconventional tight carbonate as defined in this paper has a permeability smaller than 0.1 md. The unconventional tight oil carbonate reservoir considered in this study includes 95 percent of data with permeabilities smaller than 0.1 md and only 5% with permeabilities larger than 0.1 md. The method introduced by Lucia (1983) and Jennings and Lucia (2003) for determining RFN is powerful, but they explained it only for permeabilities larger than 0.1 md. Thus, the need for a methodology that allows estimating from well logs the presence of grainstone, packstone and/or wackstone in unconventional tight carbonate reservoirs with permeabilities smaller than 0.1 md.\n Results indicate that the RFN provides a useful approach for distinguishing grainstone, packstone and wackstone rocks in unconventional tight carbonate reservoirs. Furthermore, rock fabric can be linked with Pickett plots to provide an integrated quantitative evaluation of RFN, porosity, water saturation, permeability, pore throat radius, and capillary pressure. This integration indicates that there is good oil potential in the Middle Cretaceous unconventional tight carbonate in Mexico.\n The novelty of this paper is the use of rock fabric (RFN) in unconventional tight carbonates with permeabilities smaller than 0.1 md for estimating the presence of grainstone, packstone and wackstone rocks from well logs. In addition, a crossplot of RFN vs rp35 provides a good indication of intervals with oil production potential.","PeriodicalId":146458,"journal":{"name":"Day 1 Wed, March 16, 2022","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A New Method for Determination of Rock Fabric Number from Well Logs in Unconventional Tight Oil Carbonates\",\"authors\":\"Brenda Azuara Diliegros, R. Aguilera\",\"doi\":\"10.2118/208893-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This paper develops a new method for estimation of rock fabric number (RFN) from well logs in unconventional tight oil carbonates with less than 0.1 md. The objective is to investigate the oil potential of a Middle Cretaceous tight carbonate in Mexico. Development of a method for these conditions is challenging as the current approach developed by Lucia (1983) has been explained for carbonates with more than 0.1md.\\n The method is calibrated with data from cores and cuttings and allows estimating the presence of grainstone, packstone and wackstone rocks in unconventional tight carbonates from well logs. A crossplot of RFN vs rp35 (pore throat radius at 35% cumulative pore volume) permits delimiting intervals with good production potential that is supported by well testing data. Information for analysis of the Mexican carbonate comes from well logs of 9 wells and 2 re-entry wells, four buildup tests and a limited amount of core and drill cuttings information. All data were provided by a petroleum company and have been used, for transparency, without any modifications.\\n An unconventional tight carbonate as defined in this paper has a permeability smaller than 0.1 md. The unconventional tight oil carbonate reservoir considered in this study includes 95 percent of data with permeabilities smaller than 0.1 md and only 5% with permeabilities larger than 0.1 md. The method introduced by Lucia (1983) and Jennings and Lucia (2003) for determining RFN is powerful, but they explained it only for permeabilities larger than 0.1 md. Thus, the need for a methodology that allows estimating from well logs the presence of grainstone, packstone and/or wackstone in unconventional tight carbonate reservoirs with permeabilities smaller than 0.1 md.\\n Results indicate that the RFN provides a useful approach for distinguishing grainstone, packstone and wackstone rocks in unconventional tight carbonate reservoirs. Furthermore, rock fabric can be linked with Pickett plots to provide an integrated quantitative evaluation of RFN, porosity, water saturation, permeability, pore throat radius, and capillary pressure. This integration indicates that there is good oil potential in the Middle Cretaceous unconventional tight carbonate in Mexico.\\n The novelty of this paper is the use of rock fabric (RFN) in unconventional tight carbonates with permeabilities smaller than 0.1 md for estimating the presence of grainstone, packstone and wackstone rocks from well logs. In addition, a crossplot of RFN vs rp35 provides a good indication of intervals with oil production potential.\",\"PeriodicalId\":146458,\"journal\":{\"name\":\"Day 1 Wed, March 16, 2022\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Wed, March 16, 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/208893-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Wed, March 16, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/208893-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种利用小于0.1 md的非常规致密油碳酸盐岩测井资料估算岩石组构数(RFN)的新方法,目的是研究墨西哥中白垩统致密碳酸盐岩的石油潜力。由于Lucia(1983)开发的当前方法已经解释了大于0.1md的碳酸盐,因此开发用于这些条件的方法具有挑战性。该方法通过岩心和岩屑的数据进行校准,可以根据测井数据估计非常规致密碳酸盐岩中颗粒岩、包层岩和碎屑岩的存在。RFN与rp35(累积孔隙体积为35%时的孔喉半径)的交叉图可以通过试井数据来确定具有良好生产潜力的层段。墨西哥碳酸盐岩的分析信息来自9口井和2口再入井的测井曲线、4次堆积测试以及有限的岩心和钻屑信息。所有数据都是由一家石油公司提供的,为了透明起见,这些数据没有经过任何修改。本文定义的非常规致密碳酸盐岩渗透率小于0.1 md。本研究考虑的非常规致密油碳酸盐岩储层包括95%的渗透率小于0.1 md的数据,只有5%的渗透率大于0.1 md的数据。Lucia(1983)和Jennings和Lucia(2003)引入的确定RFN的方法很强大,但他们只解释了渗透率大于0.1 md的情况。在渗透率小于0.1 md的非常规致密碳酸盐岩储层中,需要一种能够从测井资料中估计颗粒岩、包覆岩和/或碎屑岩是否存在的方法。结果表明,RFN为区分非常规致密碳酸盐岩储层中的颗粒岩、包覆岩和碎屑岩提供了一种有用的方法。此外,岩石组构可以与Pickett图联系起来,提供RFN、孔隙度、含水饱和度、渗透率、孔喉半径和毛管压力的综合定量评价。这表明墨西哥中白垩统非常规致密碳酸盐岩具有良好的成藏潜力。本文的新颖之处在于,在渗透率小于0.1 md的非常规致密碳酸盐岩中使用岩石织构(RFN),从测井资料中估计颗粒岩、包覆岩和碎屑岩的存在。此外,RFN与rp35的交叉图可以很好地指示具有石油生产潜力的层段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Method for Determination of Rock Fabric Number from Well Logs in Unconventional Tight Oil Carbonates
This paper develops a new method for estimation of rock fabric number (RFN) from well logs in unconventional tight oil carbonates with less than 0.1 md. The objective is to investigate the oil potential of a Middle Cretaceous tight carbonate in Mexico. Development of a method for these conditions is challenging as the current approach developed by Lucia (1983) has been explained for carbonates with more than 0.1md. The method is calibrated with data from cores and cuttings and allows estimating the presence of grainstone, packstone and wackstone rocks in unconventional tight carbonates from well logs. A crossplot of RFN vs rp35 (pore throat radius at 35% cumulative pore volume) permits delimiting intervals with good production potential that is supported by well testing data. Information for analysis of the Mexican carbonate comes from well logs of 9 wells and 2 re-entry wells, four buildup tests and a limited amount of core and drill cuttings information. All data were provided by a petroleum company and have been used, for transparency, without any modifications. An unconventional tight carbonate as defined in this paper has a permeability smaller than 0.1 md. The unconventional tight oil carbonate reservoir considered in this study includes 95 percent of data with permeabilities smaller than 0.1 md and only 5% with permeabilities larger than 0.1 md. The method introduced by Lucia (1983) and Jennings and Lucia (2003) for determining RFN is powerful, but they explained it only for permeabilities larger than 0.1 md. Thus, the need for a methodology that allows estimating from well logs the presence of grainstone, packstone and/or wackstone in unconventional tight carbonate reservoirs with permeabilities smaller than 0.1 md. Results indicate that the RFN provides a useful approach for distinguishing grainstone, packstone and wackstone rocks in unconventional tight carbonate reservoirs. Furthermore, rock fabric can be linked with Pickett plots to provide an integrated quantitative evaluation of RFN, porosity, water saturation, permeability, pore throat radius, and capillary pressure. This integration indicates that there is good oil potential in the Middle Cretaceous unconventional tight carbonate in Mexico. The novelty of this paper is the use of rock fabric (RFN) in unconventional tight carbonates with permeabilities smaller than 0.1 md for estimating the presence of grainstone, packstone and wackstone rocks from well logs. In addition, a crossplot of RFN vs rp35 provides a good indication of intervals with oil production potential.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Steam Additives to Reduce the Steam-Oil Ratio in SAGD: Experimental Analysis, Pilot Design, and Field Application Powering Offshore Installations with Wind Energy Quantification of Phase Behaviour and Physical Properties of Alkane Solvents/CO2/ Water/Heavy Oil Systems under Equilibrium and Nonequilibrium Conditions Profile Ultrasonic Velocity Measurements Performed on Slabbed Core: Implications for High-Resolution Permeability Prediction in Low-Permeability Rocks Holistic Real-Time Drilling Parameters Optimization Delivers Best-in-Class Drilling Performance and Preserves Bit Condition - A Case History from an Integrated Project in the Middle East
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1