深度三维人脸识别

Donghyun Kim, Matthias Hernandez, Jongmoo Choi, G. Medioni
{"title":"深度三维人脸识别","authors":"Donghyun Kim, Matthias Hernandez, Jongmoo Choi, G. Medioni","doi":"10.1109/BTAS.2017.8272691","DOIUrl":null,"url":null,"abstract":"We propose a novel 3D face recognition algorithm using a deep convolutional neural network (DCNN) and a 3D face expression augmentation technique. The performance of 2D face recognition algorithms has significantly increased by leveraging the representational power of deep neural networks and the use of large-scale labeled training data. In this paper, we show that transfer learning from a CNN trained on 2D face images can effectively work for 3D face recognition by fine-tuning the CNN with an extremely small number of 3D facial scans. We also propose a 3D face expression augmentation technique which synthesizes a number of different facial expressions from a single 3D face scan. Our proposed method shows excellent recognition results on Bosphorus, BU-3DFE, and 3D-TEC datasets without using hand-crafted features. The 3D face identification using our deep features also scales well for large databases.","PeriodicalId":372008,"journal":{"name":"2017 IEEE International Joint Conference on Biometrics (IJCB)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"110","resultStr":"{\"title\":\"Deep 3D face identification\",\"authors\":\"Donghyun Kim, Matthias Hernandez, Jongmoo Choi, G. Medioni\",\"doi\":\"10.1109/BTAS.2017.8272691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a novel 3D face recognition algorithm using a deep convolutional neural network (DCNN) and a 3D face expression augmentation technique. The performance of 2D face recognition algorithms has significantly increased by leveraging the representational power of deep neural networks and the use of large-scale labeled training data. In this paper, we show that transfer learning from a CNN trained on 2D face images can effectively work for 3D face recognition by fine-tuning the CNN with an extremely small number of 3D facial scans. We also propose a 3D face expression augmentation technique which synthesizes a number of different facial expressions from a single 3D face scan. Our proposed method shows excellent recognition results on Bosphorus, BU-3DFE, and 3D-TEC datasets without using hand-crafted features. The 3D face identification using our deep features also scales well for large databases.\",\"PeriodicalId\":372008,\"journal\":{\"name\":\"2017 IEEE International Joint Conference on Biometrics (IJCB)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"110\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Joint Conference on Biometrics (IJCB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BTAS.2017.8272691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Joint Conference on Biometrics (IJCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BTAS.2017.8272691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 110

摘要

本文提出了一种基于深度卷积神经网络(DCNN)和三维面部表情增强技术的三维人脸识别算法。利用深度神经网络的表征能力和大规模标记训练数据的使用,显著提高了二维人脸识别算法的性能。在本文中,我们表明,通过使用极少量的3D面部扫描对CNN进行微调,从2D面部图像上训练的CNN迁移学习可以有效地用于3D面部识别。我们还提出了一种3D面部表情增强技术,该技术可以从单个3D面部扫描中合成许多不同的面部表情。该方法在不使用手工特征的情况下,对博斯普鲁斯、BU-3DFE和3D-TEC数据集显示了良好的识别效果。使用我们的深度特征的3D人脸识别也可以很好地扩展到大型数据库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep 3D face identification
We propose a novel 3D face recognition algorithm using a deep convolutional neural network (DCNN) and a 3D face expression augmentation technique. The performance of 2D face recognition algorithms has significantly increased by leveraging the representational power of deep neural networks and the use of large-scale labeled training data. In this paper, we show that transfer learning from a CNN trained on 2D face images can effectively work for 3D face recognition by fine-tuning the CNN with an extremely small number of 3D facial scans. We also propose a 3D face expression augmentation technique which synthesizes a number of different facial expressions from a single 3D face scan. Our proposed method shows excellent recognition results on Bosphorus, BU-3DFE, and 3D-TEC datasets without using hand-crafted features. The 3D face identification using our deep features also scales well for large databases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accuracy evaluation of handwritten signature verification: Rethinking the random-skilled forgeries dichotomy SSERBC 2017: Sclera segmentation and eye recognition benchmarking competition Age and gender classification using local appearance descriptors from facial components Evaluation of a 3D-aided pose invariant 2D face recognition system Towards pre-alignment of near-infrared iris images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1