使用分布式跟踪识别云应用程序中低效的资源组合

Clément Cassé, Pascal Berthou, P. Owezarski, S. Josset
{"title":"使用分布式跟踪识别云应用程序中低效的资源组合","authors":"Clément Cassé, Pascal Berthou, P. Owezarski, S. Josset","doi":"10.1109/CloudNet53349.2021.9657140","DOIUrl":null,"url":null,"abstract":"Cloud-Applications are the new industry standard way of designing Web-Applications. With Cloud Computing, Applications are usually designed as microservices, and developers can take advantage of thousands of such existing microservices, involving several hundred of cross-component communications on different physical resources.Microservices orchestration (as Kubernetes) is an automatic process, which manages each component lifecycle, and notably their allocation on the different resources of the cloud infrastructure. Whereas such automatic cloud technologies ease development and deployment, they nevertheless obscure debugging and performance analysis. In order to gain insight on the composition of services, distributed tracing recently emerged as a way to get the decomposition of the activity of each component within a cloud infrastructure. This paper aims at providing methodologies and tools (leveraging state-of-the-art tracing) for getting a wider view of application behaviours, especially focusing on application performance assessment.In this paper, we focus on using distributed traces and allocation information from microservices to model their dependencies as a hierarchical property graph. By applying graph rewriting operations, we managed to project and filter communications observed between microservices at higher abstraction layers like the machine nodes, the zones or regions. Finally, in this paper we propose an implementation of the model running on a microservices shopping application deployed on a Zonal Kubernetes cluster monitored by OpenTelemetry traces. We propose using the flow hierarchy metric on the graph model to pinpoint cycles that reveal inefficient resource composition inducing possible performance issues and economic waste.","PeriodicalId":369247,"journal":{"name":"2021 IEEE 10th International Conference on Cloud Networking (CloudNet)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Using Distributed Tracing to Identify Inefficient Resources Composition in Cloud Applications\",\"authors\":\"Clément Cassé, Pascal Berthou, P. Owezarski, S. Josset\",\"doi\":\"10.1109/CloudNet53349.2021.9657140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cloud-Applications are the new industry standard way of designing Web-Applications. With Cloud Computing, Applications are usually designed as microservices, and developers can take advantage of thousands of such existing microservices, involving several hundred of cross-component communications on different physical resources.Microservices orchestration (as Kubernetes) is an automatic process, which manages each component lifecycle, and notably their allocation on the different resources of the cloud infrastructure. Whereas such automatic cloud technologies ease development and deployment, they nevertheless obscure debugging and performance analysis. In order to gain insight on the composition of services, distributed tracing recently emerged as a way to get the decomposition of the activity of each component within a cloud infrastructure. This paper aims at providing methodologies and tools (leveraging state-of-the-art tracing) for getting a wider view of application behaviours, especially focusing on application performance assessment.In this paper, we focus on using distributed traces and allocation information from microservices to model their dependencies as a hierarchical property graph. By applying graph rewriting operations, we managed to project and filter communications observed between microservices at higher abstraction layers like the machine nodes, the zones or regions. Finally, in this paper we propose an implementation of the model running on a microservices shopping application deployed on a Zonal Kubernetes cluster monitored by OpenTelemetry traces. We propose using the flow hierarchy metric on the graph model to pinpoint cycles that reveal inefficient resource composition inducing possible performance issues and economic waste.\",\"PeriodicalId\":369247,\"journal\":{\"name\":\"2021 IEEE 10th International Conference on Cloud Networking (CloudNet)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 10th International Conference on Cloud Networking (CloudNet)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CloudNet53349.2021.9657140\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 10th International Conference on Cloud Networking (CloudNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CloudNet53349.2021.9657140","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

云应用程序是设计web应用程序的新行业标准方式。使用云计算,应用程序通常被设计为微服务,开发人员可以利用数千个这样的现有微服务,涉及数百个不同物理资源上的跨组件通信。微服务编排(如Kubernetes)是一个自动化的过程,它管理每个组件的生命周期,特别是它们在云基础设施的不同资源上的分配。尽管这种自动云技术简化了开发和部署,但它们仍然模糊了调试和性能分析。为了深入了解服务的组合,分布式跟踪最近成为了一种获得云基础设施中每个组件的活动分解的方法。本文旨在提供方法和工具(利用最先进的跟踪),以获得更广泛的应用程序行为视图,特别是关注应用程序性能评估。在本文中,我们着重于使用来自微服务的分布式跟踪和分配信息来将它们的依赖关系建模为分层属性图。通过应用图形重写操作,我们成功地在更高的抽象层(如机器节点、区域或区域)投射和过滤微服务之间观察到的通信。最后,在本文中,我们提出了一个模型的实现,该模型运行在部署在由OpenTelemetry跟踪监控的区域Kubernetes集群上的微服务购物应用程序上。我们建议在图模型上使用流层次度量来确定揭示低效资源构成的周期,从而导致可能的性能问题和经济浪费。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using Distributed Tracing to Identify Inefficient Resources Composition in Cloud Applications
Cloud-Applications are the new industry standard way of designing Web-Applications. With Cloud Computing, Applications are usually designed as microservices, and developers can take advantage of thousands of such existing microservices, involving several hundred of cross-component communications on different physical resources.Microservices orchestration (as Kubernetes) is an automatic process, which manages each component lifecycle, and notably their allocation on the different resources of the cloud infrastructure. Whereas such automatic cloud technologies ease development and deployment, they nevertheless obscure debugging and performance analysis. In order to gain insight on the composition of services, distributed tracing recently emerged as a way to get the decomposition of the activity of each component within a cloud infrastructure. This paper aims at providing methodologies and tools (leveraging state-of-the-art tracing) for getting a wider view of application behaviours, especially focusing on application performance assessment.In this paper, we focus on using distributed traces and allocation information from microservices to model their dependencies as a hierarchical property graph. By applying graph rewriting operations, we managed to project and filter communications observed between microservices at higher abstraction layers like the machine nodes, the zones or regions. Finally, in this paper we propose an implementation of the model running on a microservices shopping application deployed on a Zonal Kubernetes cluster monitored by OpenTelemetry traces. We propose using the flow hierarchy metric on the graph model to pinpoint cycles that reveal inefficient resource composition inducing possible performance issues and economic waste.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Estimating Function Completion Time Distribution in Open Source FaaS Using Machine Learning and In-band Network Telemetry for Service Metrics Estimation A Machine Learning Approach for Service Function Chain Embedding in Cloud Datacenter Networks Where is the Light(ning) in the Taproot Dawn? Unveiling the Bitcoin Lightning (IP) Network An Edge Video Analysis Solution For Intelligent Real-Time Video Surveillance Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1