基于价态唤醒模型的人体动作捕捉序列自动影响分类

William Li, Philippe Pasquier
{"title":"基于价态唤醒模型的人体动作捕捉序列自动影响分类","authors":"William Li, Philippe Pasquier","doi":"10.1145/2948910.2948936","DOIUrl":null,"url":null,"abstract":"The problem that we are addressing is that of affect classification: analysing emotions given input data. There are two parts to this study. In the first part, to achieve better recognition and classification of human movement, we investigate that the labels on existing Motion Capture (MoCap) data are consistent with human perception within a reasonable extent. Specifically, we examine movement in terms of valence and arousal (emotion and energy). In part two, we present machine learning techniques for affect classification of human motion capture sequences in both categorical and continuous approaches. For the categorical approach, we evaluate the performance of Hidden Markov Models (HMM). For the continuous approach, we use stepwise linear regression models with the responses of participants from the first part as the ground truth labels for each movement.","PeriodicalId":381334,"journal":{"name":"Proceedings of the 3rd International Symposium on Movement and Computing","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Automatic Affect Classification of Human Motion Capture Sequences in the Valence-Arousal Model\",\"authors\":\"William Li, Philippe Pasquier\",\"doi\":\"10.1145/2948910.2948936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem that we are addressing is that of affect classification: analysing emotions given input data. There are two parts to this study. In the first part, to achieve better recognition and classification of human movement, we investigate that the labels on existing Motion Capture (MoCap) data are consistent with human perception within a reasonable extent. Specifically, we examine movement in terms of valence and arousal (emotion and energy). In part two, we present machine learning techniques for affect classification of human motion capture sequences in both categorical and continuous approaches. For the categorical approach, we evaluate the performance of Hidden Markov Models (HMM). For the continuous approach, we use stepwise linear regression models with the responses of participants from the first part as the ground truth labels for each movement.\",\"PeriodicalId\":381334,\"journal\":{\"name\":\"Proceedings of the 3rd International Symposium on Movement and Computing\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Symposium on Movement and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2948910.2948936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Symposium on Movement and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2948910.2948936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们要解决的问题是情感分类:分析给定输入数据的情感。本研究分为两部分。在第一部分中,为了更好地识别和分类人体运动,我们研究了现有运动捕捉(MoCap)数据上的标签在合理程度上与人类感知一致。具体来说,我们从效价和唤醒(情感和能量)的角度来研究运动。在第二部分中,我们介绍了在分类和连续方法中对人类动作捕捉序列进行影响分类的机器学习技术。对于分类方法,我们评估了隐马尔可夫模型(HMM)的性能。对于连续方法,我们使用逐步线性回归模型,将第一部分参与者的响应作为每个动作的基本真值标签。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Affect Classification of Human Motion Capture Sequences in the Valence-Arousal Model
The problem that we are addressing is that of affect classification: analysing emotions given input data. There are two parts to this study. In the first part, to achieve better recognition and classification of human movement, we investigate that the labels on existing Motion Capture (MoCap) data are consistent with human perception within a reasonable extent. Specifically, we examine movement in terms of valence and arousal (emotion and energy). In part two, we present machine learning techniques for affect classification of human motion capture sequences in both categorical and continuous approaches. For the categorical approach, we evaluate the performance of Hidden Markov Models (HMM). For the continuous approach, we use stepwise linear regression models with the responses of participants from the first part as the ground truth labels for each movement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D-scene modelling of professional gestures when interacting with moving, deformable and revolving objects m+m: A novel Middleware for Distributed, Movement based Interactive Multimedia Systems A Novel Tool for Motion Capture Database Factor Statistical Exploration Autopoiesis in Creativity and Art BalOnSe: Ballet Ontology for Annotating and Searching Video performances
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1