检测静态物体为视频监控的任务

Rubén Heras Evangelio, T. Senst, T. Sikora
{"title":"检测静态物体为视频监控的任务","authors":"Rubén Heras Evangelio, T. Senst, T. Sikora","doi":"10.1109/WACV.2011.5711550","DOIUrl":null,"url":null,"abstract":"Detecting static objects in video sequences has a high relevance in many surveillance scenarios like airports and railwaystations. In this paper we propose a system for the detection of static objects in crowded scenes that, based on the detection of two background models learning at different rates, classifies pixels with the help of a finite-state machine. The background is modelled by two mixtures of Gaussians with identical parameters except for the learning rate. The state machine provides the meaning for the interpretation of the results obtained from background subtraction and can be used to incorporate additional information cues, obtaining thus a flexible system specially suitable for real-life applications. The system was built in our surveillance application and successfully validated with several public datasets.","PeriodicalId":424724,"journal":{"name":"2011 IEEE Workshop on Applications of Computer Vision (WACV)","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":"{\"title\":\"Detection of static objects for the task of video surveillance\",\"authors\":\"Rubén Heras Evangelio, T. Senst, T. Sikora\",\"doi\":\"10.1109/WACV.2011.5711550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Detecting static objects in video sequences has a high relevance in many surveillance scenarios like airports and railwaystations. In this paper we propose a system for the detection of static objects in crowded scenes that, based on the detection of two background models learning at different rates, classifies pixels with the help of a finite-state machine. The background is modelled by two mixtures of Gaussians with identical parameters except for the learning rate. The state machine provides the meaning for the interpretation of the results obtained from background subtraction and can be used to incorporate additional information cues, obtaining thus a flexible system specially suitable for real-life applications. The system was built in our surveillance application and successfully validated with several public datasets.\",\"PeriodicalId\":424724,\"journal\":{\"name\":\"2011 IEEE Workshop on Applications of Computer Vision (WACV)\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"34\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Workshop on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2011.5711550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2011.5711550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34

摘要

在机场和火车站等监控场景中,检测视频序列中的静态物体具有很高的相关性。在本文中,我们提出了一种用于拥挤场景中静态物体检测的系统,该系统基于以不同速率学习的两个背景模型的检测,在有限状态机的帮助下对像素进行分类。除学习率外,背景由两个具有相同参数的高斯混合模型建模。状态机为解释从背景减法中获得的结果提供了意义,并可用于合并额外的信息线索,从而获得特别适合实际应用的灵活系统。该系统建立在我们的监控应用程序中,并成功地通过几个公共数据集进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of static objects for the task of video surveillance
Detecting static objects in video sequences has a high relevance in many surveillance scenarios like airports and railwaystations. In this paper we propose a system for the detection of static objects in crowded scenes that, based on the detection of two background models learning at different rates, classifies pixels with the help of a finite-state machine. The background is modelled by two mixtures of Gaussians with identical parameters except for the learning rate. The state machine provides the meaning for the interpretation of the results obtained from background subtraction and can be used to incorporate additional information cues, obtaining thus a flexible system specially suitable for real-life applications. The system was built in our surveillance application and successfully validated with several public datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tracking planes with Time of Flight cameras and J-linkage Multi-modal visual concept classification of images via Markov random walk over tags Real-time illumination-invariant motion detection in spatio-temporal image volumes An evaluation of bags-of-words and spatio-temporal shapes for action recognition Illumination change compensation techniques to improve kinematic tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1