具有鲜明视觉语汇的形象匹配

Hongwen Kang, M. Hebert, T. Kanade
{"title":"具有鲜明视觉语汇的形象匹配","authors":"Hongwen Kang, M. Hebert, T. Kanade","doi":"10.1109/WACV.2011.5711532","DOIUrl":null,"url":null,"abstract":"In this paper we propose an image indexing and matching algorithm that relies on selecting distinctive high dimensional features. In contrast with conventional techniques that treated all features equally, we claim that one can benefit significantly from focusing on distinctive features. We propose a bag-of-words algorithm that combines the feature distinctiveness in visual vocabulary generation. Our approach compares favorably with the state of the art in image matching tasks on the University of Kentucky Recognition Benchmark dataset and on an indoor localization dataset. We also show that our approach scales up more gracefully on a large scale Flickr dataset.","PeriodicalId":424724,"journal":{"name":"2011 IEEE Workshop on Applications of Computer Vision (WACV)","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Image matching with distinctive visual vocabulary\",\"authors\":\"Hongwen Kang, M. Hebert, T. Kanade\",\"doi\":\"10.1109/WACV.2011.5711532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose an image indexing and matching algorithm that relies on selecting distinctive high dimensional features. In contrast with conventional techniques that treated all features equally, we claim that one can benefit significantly from focusing on distinctive features. We propose a bag-of-words algorithm that combines the feature distinctiveness in visual vocabulary generation. Our approach compares favorably with the state of the art in image matching tasks on the University of Kentucky Recognition Benchmark dataset and on an indoor localization dataset. We also show that our approach scales up more gracefully on a large scale Flickr dataset.\",\"PeriodicalId\":424724,\"journal\":{\"name\":\"2011 IEEE Workshop on Applications of Computer Vision (WACV)\",\"volume\":\"127 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Workshop on Applications of Computer Vision (WACV)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2011.5711532\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Applications of Computer Vision (WACV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2011.5711532","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

本文提出了一种基于高维特征选取的图像索引与匹配算法。与同等对待所有特征的传统技术相比,我们声称人们可以从专注于独特的特征中获益良多。我们提出了一种结合视觉词汇生成中特征显著性的词袋算法。我们的方法与肯塔基大学识别基准数据集和室内定位数据集上的图像匹配任务的最新状态相比具有优势。我们还展示了我们的方法在大规模的Flickr数据集上更优雅地扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image matching with distinctive visual vocabulary
In this paper we propose an image indexing and matching algorithm that relies on selecting distinctive high dimensional features. In contrast with conventional techniques that treated all features equally, we claim that one can benefit significantly from focusing on distinctive features. We propose a bag-of-words algorithm that combines the feature distinctiveness in visual vocabulary generation. Our approach compares favorably with the state of the art in image matching tasks on the University of Kentucky Recognition Benchmark dataset and on an indoor localization dataset. We also show that our approach scales up more gracefully on a large scale Flickr dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tracking planes with Time of Flight cameras and J-linkage Multi-modal visual concept classification of images via Markov random walk over tags Real-time illumination-invariant motion detection in spatio-temporal image volumes An evaluation of bags-of-words and spatio-temporal shapes for action recognition Illumination change compensation techniques to improve kinematic tracking
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1