ResNet 101对吸塑包装分类的可视化解释

Narit Hnoohom, Nagorn Maitrichit, K. Wongpatikaseree, Sumeth Yuenyong, S. Mekruksavanich, A. Jitpattanakul
{"title":"ResNet 101对吸塑包装分类的可视化解释","authors":"Narit Hnoohom, Nagorn Maitrichit, K. Wongpatikaseree, Sumeth Yuenyong, S. Mekruksavanich, A. Jitpattanakul","doi":"10.1109/RI2C56397.2022.9910317","DOIUrl":null,"url":null,"abstract":"This paper presents an efficient approach to generate visual explanations from a ResNet 101 model for identification of medication. The blister package dataset is used to train a deep learning model built on the PyTorch framework’s ResNet 101 pre-trained model. Visual inspections and a quantitative localization benchmark demonstrate that the model approach correctly identifies the critical components of blister packs for medicine identification. A Gradient-weighted Class Activation Mapping (Grad-CAM) method is used to extract the feature map, and then the attention mechanism is utilized to extract the high-level attention maps, that emphasizes the part of the image that is significant to the target class, which can be considered as a visual representation. The experimental results indicated that the Grad-CAM achieved the better visualization and interpretation of ResNet 101 in blister package classification.","PeriodicalId":403083,"journal":{"name":"2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C)","volume":"291 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visual Explanations of ResNet 101 for Blister Package Classification\",\"authors\":\"Narit Hnoohom, Nagorn Maitrichit, K. Wongpatikaseree, Sumeth Yuenyong, S. Mekruksavanich, A. Jitpattanakul\",\"doi\":\"10.1109/RI2C56397.2022.9910317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an efficient approach to generate visual explanations from a ResNet 101 model for identification of medication. The blister package dataset is used to train a deep learning model built on the PyTorch framework’s ResNet 101 pre-trained model. Visual inspections and a quantitative localization benchmark demonstrate that the model approach correctly identifies the critical components of blister packs for medicine identification. A Gradient-weighted Class Activation Mapping (Grad-CAM) method is used to extract the feature map, and then the attention mechanism is utilized to extract the high-level attention maps, that emphasizes the part of the image that is significant to the target class, which can be considered as a visual representation. The experimental results indicated that the Grad-CAM achieved the better visualization and interpretation of ResNet 101 in blister package classification.\",\"PeriodicalId\":403083,\"journal\":{\"name\":\"2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C)\",\"volume\":\"291 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RI2C56397.2022.9910317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RI2C56397.2022.9910317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种从ResNet 101模型生成用于识别药物的可视化解释的有效方法。blister包数据集用于训练基于PyTorch框架的ResNet 101预训练模型构建的深度学习模型。目视检查和定量定位基准表明,该模型方法正确地识别了用于药物识别的吸塑包装的关键部件。采用梯度加权类激活映射(Gradient-weighted Class Activation Mapping, Grad-CAM)方法提取特征图,然后利用注意机制提取高级注意图,该注意图强调图像中对目标类重要的部分,可视为视觉表示。实验结果表明,Grad-CAM在吸塑包装分类中能够较好地实现ResNet 101的可视化和解译。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visual Explanations of ResNet 101 for Blister Package Classification
This paper presents an efficient approach to generate visual explanations from a ResNet 101 model for identification of medication. The blister package dataset is used to train a deep learning model built on the PyTorch framework’s ResNet 101 pre-trained model. Visual inspections and a quantitative localization benchmark demonstrate that the model approach correctly identifies the critical components of blister packs for medicine identification. A Gradient-weighted Class Activation Mapping (Grad-CAM) method is used to extract the feature map, and then the attention mechanism is utilized to extract the high-level attention maps, that emphasizes the part of the image that is significant to the target class, which can be considered as a visual representation. The experimental results indicated that the Grad-CAM achieved the better visualization and interpretation of ResNet 101 in blister package classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hyperparameter Tuning in Convolutional Neural Network for Face Touching Activity Recognition using Accelerometer Data RI2C 2022 Cover Page CNN based Automatic Detection of Defective Photovoltaic Modules using Aerial Imagery Metaverse for Developing Engineering Competency A Comparative Study of Deep Convolutional Neural Networks for Car Image Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1