网络知识不确定性建模

Dean Lee, S. Hamilton, W. L. Hamilton
{"title":"网络知识不确定性建模","authors":"Dean Lee, S. Hamilton, W. L. Hamilton","doi":"10.1109/CICYBS.2011.5949390","DOIUrl":null,"url":null,"abstract":"Sensor data can be used to provide a snapshot of the state of a mission critical network. However, sensor data and the conclusions derived from it (Cyber Knowledge) will often contain conflicting values for a given conclusion. In this paper we present a new method for representing and combining cyber knowledge that maintains accuracy even in the face of multiple conflicting inputs.","PeriodicalId":436263,"journal":{"name":"2011 IEEE Symposium on Computational Intelligence in Cyber Security (CICS)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Modeling Cyber Knowledge uncertainty\",\"authors\":\"Dean Lee, S. Hamilton, W. L. Hamilton\",\"doi\":\"10.1109/CICYBS.2011.5949390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sensor data can be used to provide a snapshot of the state of a mission critical network. However, sensor data and the conclusions derived from it (Cyber Knowledge) will often contain conflicting values for a given conclusion. In this paper we present a new method for representing and combining cyber knowledge that maintains accuracy even in the face of multiple conflicting inputs.\",\"PeriodicalId\":436263,\"journal\":{\"name\":\"2011 IEEE Symposium on Computational Intelligence in Cyber Security (CICS)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Symposium on Computational Intelligence in Cyber Security (CICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICYBS.2011.5949390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Computational Intelligence in Cyber Security (CICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICYBS.2011.5949390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

传感器数据可用于提供关键任务网络状态的快照。然而,对于给定的结论,传感器数据和由此得出的结论(Cyber Knowledge)往往包含相互冲突的值。在本文中,我们提出了一种表示和组合网络知识的新方法,即使面对多个相互冲突的输入,也能保持准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling Cyber Knowledge uncertainty
Sensor data can be used to provide a snapshot of the state of a mission critical network. However, sensor data and the conclusions derived from it (Cyber Knowledge) will often contain conflicting values for a given conclusion. In this paper we present a new method for representing and combining cyber knowledge that maintains accuracy even in the face of multiple conflicting inputs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Genetic optimization and hierarchical clustering applied to encrypted traffic identification Design considerations for a case-based reasoning engine for scenario-based cyber incident notification Fuzzy logic based anomaly detection for embedded network security cyber sensor Security visualization: Cyber security storm map and event correlation A Hybrid of the prefix algorithm and the q-hidden algorithm for generating single negative databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1