基于信息特征和线性分类的目标识别

Michel Vidal-Naquet, S. Ullman
{"title":"基于信息特征和线性分类的目标识别","authors":"Michel Vidal-Naquet, S. Ullman","doi":"10.1109/ICCV.2003.1238356","DOIUrl":null,"url":null,"abstract":"We show that efficient object recognition can be obtained by combining informative features with linear classification. The results demonstrate the superiority of informative class-specific features, as compared with generic type features such as wavelets, for the task of object recognition. We show that information rich features can reach optimal performance with simple linear separation rules, while generic feature based classifiers require more complex classification schemes. This is significant because efficient and optimal methods have been developed for spaces that allow linear separation. To compare different strategies for feature extraction, we trained and compared classifiers working in feature spaces of the same low dimensionality, using two feature types (image fragments vs. wavelets) and two classification rules (linear hyperplane and a Bayesian network). The results show that by maximizing the individual information of the features, it is possible to obtain efficient classification by a simple linear separating rule, as well as more efficient learning.","PeriodicalId":131580,"journal":{"name":"Proceedings Ninth IEEE International Conference on Computer Vision","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"268","resultStr":"{\"title\":\"Object recognition with informative features and linear classification\",\"authors\":\"Michel Vidal-Naquet, S. Ullman\",\"doi\":\"10.1109/ICCV.2003.1238356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that efficient object recognition can be obtained by combining informative features with linear classification. The results demonstrate the superiority of informative class-specific features, as compared with generic type features such as wavelets, for the task of object recognition. We show that information rich features can reach optimal performance with simple linear separation rules, while generic feature based classifiers require more complex classification schemes. This is significant because efficient and optimal methods have been developed for spaces that allow linear separation. To compare different strategies for feature extraction, we trained and compared classifiers working in feature spaces of the same low dimensionality, using two feature types (image fragments vs. wavelets) and two classification rules (linear hyperplane and a Bayesian network). The results show that by maximizing the individual information of the features, it is possible to obtain efficient classification by a simple linear separating rule, as well as more efficient learning.\",\"PeriodicalId\":131580,\"journal\":{\"name\":\"Proceedings Ninth IEEE International Conference on Computer Vision\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"268\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Ninth IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2003.1238356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2003.1238356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 268

摘要

我们证明了将信息特征与线性分类相结合可以获得有效的目标识别。结果表明,与一般类型特征(如小波)相比,信息类特定特征在目标识别任务中具有优势。研究表明,信息丰富的特征可以通过简单的线性分离规则达到最优性能,而基于一般特征的分类器需要更复杂的分类方案。这一点很重要,因为对于允许线性分离的空间,已经开发出了高效和最佳的方法。为了比较不同的特征提取策略,我们使用两种特征类型(图像片段与小波)和两种分类规则(线性超平面和贝叶斯网络)训练并比较了在相同低维特征空间中工作的分类器。结果表明,通过最大化特征的个体信息,可以通过简单的线性分离规则获得有效的分类,并且可以提高学习效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Object recognition with informative features and linear classification
We show that efficient object recognition can be obtained by combining informative features with linear classification. The results demonstrate the superiority of informative class-specific features, as compared with generic type features such as wavelets, for the task of object recognition. We show that information rich features can reach optimal performance with simple linear separation rules, while generic feature based classifiers require more complex classification schemes. This is significant because efficient and optimal methods have been developed for spaces that allow linear separation. To compare different strategies for feature extraction, we trained and compared classifiers working in feature spaces of the same low dimensionality, using two feature types (image fragments vs. wavelets) and two classification rules (linear hyperplane and a Bayesian network). The results show that by maximizing the individual information of the features, it is possible to obtain efficient classification by a simple linear separating rule, as well as more efficient learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fusion of static and dynamic body biometrics for gait recognition Selection of scale-invariant parts for object class recognition Information theoretic focal length selection for real-time active 3D object tracking A multi-scale generative model for animate shapes and parts Integrated edge and junction detection with the boundary tensor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1