K. Nakajima, Balazs Gerofi, Y. Ishikawa, Masashi Horikoshi
{"title":"Intel Xeon Phi集群的高效并行多网格方法","authors":"K. Nakajima, Balazs Gerofi, Y. Ishikawa, Masashi Horikoshi","doi":"10.1145/3440722.3440882","DOIUrl":null,"url":null,"abstract":"The parallel multigrid method is expected to play an important role in scientific computing on exa-scale supercomputer systems for solving large-scale linear equations with sparse matrices. Because solving sparse linear systems is a very memory-bound process, efficient method for storage of coefficient matrices is a crucial issue. In the previous works, authors implemented sliced ELL method to parallel conjugate gradient solvers with multigrid preconditioning (MGCG) for the application on 3D groundwater flow through heterogeneous porous media (pGW3D-FVM), and excellent performance has been obtained on large-scale multicore/manycore clusters. In the present work, authors introduced SELL-C-σ to the MGCG solver, and evaluated the performance of the solver with various types of OpenMP/MPI hybrid parallel programing models on the Oakforest-PACS (OFP) system at JCAHPC using up to 1,024 nodes of Intel Xeon Phi. Because SELL-C-σ is suitable for wide-SIMD architecture, such as Xeon Phi, improvement of the performance over the sliced ELL was more than 20%. This is one of the first examples of SELL-C-σ applied to forward/backward substitutions in ILU-type smoother of multigrid solver. Furthermore, effects of IHK/McKernel has been investigated, and it achieved 11% improvement on 1,024 nodes.","PeriodicalId":183674,"journal":{"name":"The International Conference on High Performance Computing in Asia-Pacific Region Companion","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Efficient Parallel Multigrid Method on Intel Xeon Phi Clusters\",\"authors\":\"K. Nakajima, Balazs Gerofi, Y. Ishikawa, Masashi Horikoshi\",\"doi\":\"10.1145/3440722.3440882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The parallel multigrid method is expected to play an important role in scientific computing on exa-scale supercomputer systems for solving large-scale linear equations with sparse matrices. Because solving sparse linear systems is a very memory-bound process, efficient method for storage of coefficient matrices is a crucial issue. In the previous works, authors implemented sliced ELL method to parallel conjugate gradient solvers with multigrid preconditioning (MGCG) for the application on 3D groundwater flow through heterogeneous porous media (pGW3D-FVM), and excellent performance has been obtained on large-scale multicore/manycore clusters. In the present work, authors introduced SELL-C-σ to the MGCG solver, and evaluated the performance of the solver with various types of OpenMP/MPI hybrid parallel programing models on the Oakforest-PACS (OFP) system at JCAHPC using up to 1,024 nodes of Intel Xeon Phi. Because SELL-C-σ is suitable for wide-SIMD architecture, such as Xeon Phi, improvement of the performance over the sliced ELL was more than 20%. This is one of the first examples of SELL-C-σ applied to forward/backward substitutions in ILU-type smoother of multigrid solver. Furthermore, effects of IHK/McKernel has been investigated, and it achieved 11% improvement on 1,024 nodes.\",\"PeriodicalId\":183674,\"journal\":{\"name\":\"The International Conference on High Performance Computing in Asia-Pacific Region Companion\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The International Conference on High Performance Computing in Asia-Pacific Region Companion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3440722.3440882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Conference on High Performance Computing in Asia-Pacific Region Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3440722.3440882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient Parallel Multigrid Method on Intel Xeon Phi Clusters
The parallel multigrid method is expected to play an important role in scientific computing on exa-scale supercomputer systems for solving large-scale linear equations with sparse matrices. Because solving sparse linear systems is a very memory-bound process, efficient method for storage of coefficient matrices is a crucial issue. In the previous works, authors implemented sliced ELL method to parallel conjugate gradient solvers with multigrid preconditioning (MGCG) for the application on 3D groundwater flow through heterogeneous porous media (pGW3D-FVM), and excellent performance has been obtained on large-scale multicore/manycore clusters. In the present work, authors introduced SELL-C-σ to the MGCG solver, and evaluated the performance of the solver with various types of OpenMP/MPI hybrid parallel programing models on the Oakforest-PACS (OFP) system at JCAHPC using up to 1,024 nodes of Intel Xeon Phi. Because SELL-C-σ is suitable for wide-SIMD architecture, such as Xeon Phi, improvement of the performance over the sliced ELL was more than 20%. This is one of the first examples of SELL-C-σ applied to forward/backward substitutions in ILU-type smoother of multigrid solver. Furthermore, effects of IHK/McKernel has been investigated, and it achieved 11% improvement on 1,024 nodes.