什么样的时间段聚合方法最适合可再生能源和储能的电力系统运行模式?

S. Wogrin, D. Tejada-Arango, S. Pineda, J. Morales
{"title":"什么样的时间段聚合方法最适合可再生能源和储能的电力系统运行模式?","authors":"S. Wogrin, D. Tejada-Arango, S. Pineda, J. Morales","doi":"10.1109/SEST.2019.8849027","DOIUrl":null,"url":null,"abstract":"In this paper we compare two cutting-edge time-period aggregation methodologies for power system models that consider both renewables and storage technologies: the chronological time-period clustering; and, the enhanced representative period approach. Such methodologies are used in order to reduce the computational burden of highly complex optimization models while not compromising the quality of the results. With this paper, we identify which method works best, and under which conditions, in order to reproduce the outcomes of the hourly benchmark model.","PeriodicalId":158839,"journal":{"name":"2019 International Conference on Smart Energy Systems and Technologies (SEST)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"What time-period aggregation method works best for power system operation models with renewables and storage?\",\"authors\":\"S. Wogrin, D. Tejada-Arango, S. Pineda, J. Morales\",\"doi\":\"10.1109/SEST.2019.8849027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we compare two cutting-edge time-period aggregation methodologies for power system models that consider both renewables and storage technologies: the chronological time-period clustering; and, the enhanced representative period approach. Such methodologies are used in order to reduce the computational burden of highly complex optimization models while not compromising the quality of the results. With this paper, we identify which method works best, and under which conditions, in order to reproduce the outcomes of the hourly benchmark model.\",\"PeriodicalId\":158839,\"journal\":{\"name\":\"2019 International Conference on Smart Energy Systems and Technologies (SEST)\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Smart Energy Systems and Technologies (SEST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEST.2019.8849027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Smart Energy Systems and Technologies (SEST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEST.2019.8849027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

在本文中,我们比较了考虑可再生能源和储能技术的电力系统模型的两种前沿时间段聚合方法:按时间顺序时间段聚类;增强代表性时期法。使用这种方法是为了减少高度复杂的优化模型的计算负担,同时不影响结果的质量。通过本文,我们确定了哪种方法在哪些条件下最有效,以便重现每小时基准模型的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
What time-period aggregation method works best for power system operation models with renewables and storage?
In this paper we compare two cutting-edge time-period aggregation methodologies for power system models that consider both renewables and storage technologies: the chronological time-period clustering; and, the enhanced representative period approach. Such methodologies are used in order to reduce the computational burden of highly complex optimization models while not compromising the quality of the results. With this paper, we identify which method works best, and under which conditions, in order to reproduce the outcomes of the hourly benchmark model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Measurement Data Acquisition System in Laboratory for Renewable Energy Sources Enhancing Short-Circuit Level and Dynamic Reactive Power Exchange in GB Transmission Networks under Low Inertia Scenarios What time-period aggregation method works best for power system operation models with renewables and storage? Primary and Secondary Control in Lossy Inverter-Based Microgrids Analysis of Battery Energy Storage System Integration in a Combined Cycle Power Plant
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1