{"title":"离子泵辅助微热管的主动热控制","authors":"Zhiquan Yu, K. Hallinan, N. Pohlman, R. Kashani","doi":"10.1115/imece2000-1549","DOIUrl":null,"url":null,"abstract":"\n An ion-drag pump is utilized to enhance the heat transport capacity of micro heat pipes. An analytical model is developed to estimate the maximum heat transport capacity as a function of the applied electric field. The model predicts that the application of an electric field causes a four fold increase in heat transport capacity. A transient analytical model was developed to permit variation of the electric field with applied thermal load. A proportional-integral-derivative controller was used to simulate active temperature control. The feasibility of achieving active temperature control was demonstrated experimentally.","PeriodicalId":120929,"journal":{"name":"Heat Transfer: Volume 4","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Active Thermal Control of an Ion-Drag Pump Assisted Micro Heat Pipe\",\"authors\":\"Zhiquan Yu, K. Hallinan, N. Pohlman, R. Kashani\",\"doi\":\"10.1115/imece2000-1549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n An ion-drag pump is utilized to enhance the heat transport capacity of micro heat pipes. An analytical model is developed to estimate the maximum heat transport capacity as a function of the applied electric field. The model predicts that the application of an electric field causes a four fold increase in heat transport capacity. A transient analytical model was developed to permit variation of the electric field with applied thermal load. A proportional-integral-derivative controller was used to simulate active temperature control. The feasibility of achieving active temperature control was demonstrated experimentally.\",\"PeriodicalId\":120929,\"journal\":{\"name\":\"Heat Transfer: Volume 4\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer: Volume 4\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2000-1549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer: Volume 4","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2000-1549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Active Thermal Control of an Ion-Drag Pump Assisted Micro Heat Pipe
An ion-drag pump is utilized to enhance the heat transport capacity of micro heat pipes. An analytical model is developed to estimate the maximum heat transport capacity as a function of the applied electric field. The model predicts that the application of an electric field causes a four fold increase in heat transport capacity. A transient analytical model was developed to permit variation of the electric field with applied thermal load. A proportional-integral-derivative controller was used to simulate active temperature control. The feasibility of achieving active temperature control was demonstrated experimentally.