Kazuki Otao, Yuta Itoh, Kazuki Takazawa, Hiroyuki Osone, Yoichi Ochiai
{"title":"基于透射镜装置的近眼宽视场显示器","authors":"Kazuki Otao, Yuta Itoh, Kazuki Takazawa, Hiroyuki Osone, Yoichi Ochiai","doi":"10.1145/3214907.3214908","DOIUrl":null,"url":null,"abstract":"We present a transmissive mirror device (TMD) based near-eye see-through displays with a wide viewing angle and high resolution for virtual reality and augmented reality. In past years, many optical elements, such as transmissive liquid-crystal display (LCD), half-mirror, waveguide and holographic optical element (HOE) have been adopted for near-eye see-through displays. However, it is difficult to obtain wide field of view with see-through capability for beginner developer. To accomplish this, we develop a simple see-through display that easily setup from a combination of off-the-shelf HMD and TMD. In the proposed method, we render \"virtual lens,\" which has the same function as the HMD lens in the air. By using TMD, it is possible to shorten the optical length between the virtual lens and the eyeball. Therefore, the aerial lens provides a wide viewing angle with see-through capability. We demonstrate a prototype with a diagonal viewing angle of 100 degrees.","PeriodicalId":370990,"journal":{"name":"ACM SIGGRAPH 2018 Emerging Technologies","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transmissive mirror device based near-eye displays with wide field of view\",\"authors\":\"Kazuki Otao, Yuta Itoh, Kazuki Takazawa, Hiroyuki Osone, Yoichi Ochiai\",\"doi\":\"10.1145/3214907.3214908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a transmissive mirror device (TMD) based near-eye see-through displays with a wide viewing angle and high resolution for virtual reality and augmented reality. In past years, many optical elements, such as transmissive liquid-crystal display (LCD), half-mirror, waveguide and holographic optical element (HOE) have been adopted for near-eye see-through displays. However, it is difficult to obtain wide field of view with see-through capability for beginner developer. To accomplish this, we develop a simple see-through display that easily setup from a combination of off-the-shelf HMD and TMD. In the proposed method, we render \\\"virtual lens,\\\" which has the same function as the HMD lens in the air. By using TMD, it is possible to shorten the optical length between the virtual lens and the eyeball. Therefore, the aerial lens provides a wide viewing angle with see-through capability. We demonstrate a prototype with a diagonal viewing angle of 100 degrees.\",\"PeriodicalId\":370990,\"journal\":{\"name\":\"ACM SIGGRAPH 2018 Emerging Technologies\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGGRAPH 2018 Emerging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3214907.3214908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2018 Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3214907.3214908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Transmissive mirror device based near-eye displays with wide field of view
We present a transmissive mirror device (TMD) based near-eye see-through displays with a wide viewing angle and high resolution for virtual reality and augmented reality. In past years, many optical elements, such as transmissive liquid-crystal display (LCD), half-mirror, waveguide and holographic optical element (HOE) have been adopted for near-eye see-through displays. However, it is difficult to obtain wide field of view with see-through capability for beginner developer. To accomplish this, we develop a simple see-through display that easily setup from a combination of off-the-shelf HMD and TMD. In the proposed method, we render "virtual lens," which has the same function as the HMD lens in the air. By using TMD, it is possible to shorten the optical length between the virtual lens and the eyeball. Therefore, the aerial lens provides a wide viewing angle with see-through capability. We demonstrate a prototype with a diagonal viewing angle of 100 degrees.