利用三重损失和非线性降维的动态通道图表

Taha Yassine, Luc Le Magoarou, S. Paquelet, M. Crussiére
{"title":"利用三重损失和非线性降维的动态通道图表","authors":"Taha Yassine, Luc Le Magoarou, S. Paquelet, M. Crussiére","doi":"10.48550/arXiv.2204.13996","DOIUrl":null,"url":null,"abstract":"Channel charting is an unsupervised learning method that aims at mapping wireless channels to a so-called chart, preserving as much as possible spatial neighborhoods. In this paper, a model-based deep learning approach to this problem is proposed. It builds on a physically motivated distance measure to structure and initialize a neural network that is subsequently trained using a triplet loss function. The proposed structure exhibits a low number of parameters and clever initialization leads to fast training. These two features make the proposed approach amenable to on-the-fly channel charting. The method is empirically assessed on realistic synthetic channels, yielding encouraging results.","PeriodicalId":423807,"journal":{"name":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Leveraging triplet loss and nonlinear dimensionality reduction for on-the-fly channel charting\",\"authors\":\"Taha Yassine, Luc Le Magoarou, S. Paquelet, M. Crussiére\",\"doi\":\"10.48550/arXiv.2204.13996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Channel charting is an unsupervised learning method that aims at mapping wireless channels to a so-called chart, preserving as much as possible spatial neighborhoods. In this paper, a model-based deep learning approach to this problem is proposed. It builds on a physically motivated distance measure to structure and initialize a neural network that is subsequently trained using a triplet loss function. The proposed structure exhibits a low number of parameters and clever initialization leads to fast training. These two features make the proposed approach amenable to on-the-fly channel charting. The method is empirically assessed on realistic synthetic channels, yielding encouraging results.\",\"PeriodicalId\":423807,\"journal\":{\"name\":\"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2204.13996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communication (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.13996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

信道制图是一种无监督学习方法,旨在将无线信道映射到所谓的图表上,尽可能多地保留空间邻域。本文提出了一种基于模型的深度学习方法来解决这个问题。它建立在一个物理激励的距离度量来结构和初始化一个神经网络,随后使用三重损失函数进行训练。所提出的结构具有较少的参数数量和巧妙的初始化导致快速训练。这两个特点使所提出的方法适用于动态信道制图。该方法在实际合成通道上进行了经验评估,取得了令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Leveraging triplet loss and nonlinear dimensionality reduction for on-the-fly channel charting
Channel charting is an unsupervised learning method that aims at mapping wireless channels to a so-called chart, preserving as much as possible spatial neighborhoods. In this paper, a model-based deep learning approach to this problem is proposed. It builds on a physically motivated distance measure to structure and initialize a neural network that is subsequently trained using a triplet loss function. The proposed structure exhibits a low number of parameters and clever initialization leads to fast training. These two features make the proposed approach amenable to on-the-fly channel charting. The method is empirically assessed on realistic synthetic channels, yielding encouraging results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Secure Multi-Antenna Coded Caching Deep Transfer Learning Based Radio Map Estimation for Indoor Wireless Communications A New Outage Probability Bound for IR-HARQ and Its Application to Power Adaptation SPAWC 2022 Cover Page A Sequential Experience-driven Contextual Bandit Policy for MIMO TWAF Online Relay Selection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1