Thang Vu, Kookhoi Kim, Haeyong Kang, Xuan Thanh Nguyen, T. Luu, C. Yoo
{"title":"Sphererpn:在3d点云目标检测上学习高质量区域建议的球体","authors":"Thang Vu, Kookhoi Kim, Haeyong Kang, Xuan Thanh Nguyen, T. Luu, C. Yoo","doi":"10.1109/ICIP42928.2021.9506249","DOIUrl":null,"url":null,"abstract":"A bounding box commonly serves as the proxy for 2D object detection. However, extending this practice to 3D detection raises sensitivity to localization error. This problem is acute on flat objects since small localization error may lead to low overlaps between the prediction and ground truth. To address this problem, this paper proposes Sphere Region Proposal Network (SphereRPN) which detects objects by learning spheres as opposed to bounding boxes. We demonstrate that spherical proposals are more robust to localization error compared to bounding boxes. The proposed SphereRPN is not only accurate but also fast. Experiment results on the standard ScanNet dataset show that the proposed SphereRPN outperforms the previous state-of-the-art methods by a large margin while being $2 \\times$ to $7 \\times$ faster. The code will be made publicly available.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sphererpn: Learning Spheres For High-Quality Region Proposals On 3d Point Clouds Object Detection\",\"authors\":\"Thang Vu, Kookhoi Kim, Haeyong Kang, Xuan Thanh Nguyen, T. Luu, C. Yoo\",\"doi\":\"10.1109/ICIP42928.2021.9506249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A bounding box commonly serves as the proxy for 2D object detection. However, extending this practice to 3D detection raises sensitivity to localization error. This problem is acute on flat objects since small localization error may lead to low overlaps between the prediction and ground truth. To address this problem, this paper proposes Sphere Region Proposal Network (SphereRPN) which detects objects by learning spheres as opposed to bounding boxes. We demonstrate that spherical proposals are more robust to localization error compared to bounding boxes. The proposed SphereRPN is not only accurate but also fast. Experiment results on the standard ScanNet dataset show that the proposed SphereRPN outperforms the previous state-of-the-art methods by a large margin while being $2 \\\\times$ to $7 \\\\times$ faster. The code will be made publicly available.\",\"PeriodicalId\":314429,\"journal\":{\"name\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP42928.2021.9506249\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sphererpn: Learning Spheres For High-Quality Region Proposals On 3d Point Clouds Object Detection
A bounding box commonly serves as the proxy for 2D object detection. However, extending this practice to 3D detection raises sensitivity to localization error. This problem is acute on flat objects since small localization error may lead to low overlaps between the prediction and ground truth. To address this problem, this paper proposes Sphere Region Proposal Network (SphereRPN) which detects objects by learning spheres as opposed to bounding boxes. We demonstrate that spherical proposals are more robust to localization error compared to bounding boxes. The proposed SphereRPN is not only accurate but also fast. Experiment results on the standard ScanNet dataset show that the proposed SphereRPN outperforms the previous state-of-the-art methods by a large margin while being $2 \times$ to $7 \times$ faster. The code will be made publicly available.