航空航天紧固件。结构应用

G. Melhem
{"title":"航空航天紧固件。结构应用","authors":"G. Melhem","doi":"10.1201/9781351045636-140000240","DOIUrl":null,"url":null,"abstract":"Aircraft components need to be selected and manufactured to adequately combat the environment, temperature, loading, compatibility, and so on. When structural materials such as aluminum alloys or fiber-reinforced polymer composites need to be joined in aircraft, the selection of fasteners, bolts, rivets, adhesives, and other methods need to be quantitatively assessed in order that the correct design for the component and joining method is identified. There is a variety of fasteners, bolts, and rivets, made using a variety of materials. Aluminum rivets are often used to join aluminum components in an aircraft. Rivets do not perform well under tension loading, but perform better in shear, thus limiting the application specifically for these purposes. Bolts are designed to clamp material together, and even though the bolt may be adequate to support a particular structure and load requirement, consideration must also be given to the modulus of elasticity and stiffness of the components that are being clamped together. Therefore, an understanding of each of the materials being clamped or joined together is necessary. Bolts manufactured from steel, for instance, have coatings applied in order to help protect them from corrosion. The use of composites translates to a reduced number of rivets and fasteners to be used. Drilling of holes into composites to insert fasteners poses many challenges because the fibers are damaged, a region of high stress concentration may be formed, and the hole is a site for the ingress of water or moisture. The insertion of aluminum fasteners or the contact of aluminum components with carbon fibers creates galvanic corrosion due to the large difference in electrical potential. Titanium alloy (Ti-6Al-4V) is a typical fastener where there is composite joining due to its better compatibility (elimination of galvanic corrosion) and increased strength properties. Substitution of rivets and fasteners for welding is also on the increase in aircraft because laser beam welding (LBW) and friction stir welding both reduce cracking, porosity, and better properties achieved due to deeper penetration, and reduce the heat-affected zone which would typically be undesirable with conventional arc welding such as metal inert gas and tungsten inert gas welding. The shear and compressive stresses are increased, and fatigue cracking, weight, and cost are also reduced as a result of LBW, including the elimination of stresses and corrosion associated with rivets and the elimination of adhesives. Dissimilar metals such as the 7000 series and the 2000 series can be joined with a filler metal compatible to both metals to mitigate galvanic corrosion.","PeriodicalId":348912,"journal":{"name":"Encyclopedia of Aluminum and Its Alloys","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Aerospace Fasteners: Use in Structural Applications\",\"authors\":\"G. Melhem\",\"doi\":\"10.1201/9781351045636-140000240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aircraft components need to be selected and manufactured to adequately combat the environment, temperature, loading, compatibility, and so on. When structural materials such as aluminum alloys or fiber-reinforced polymer composites need to be joined in aircraft, the selection of fasteners, bolts, rivets, adhesives, and other methods need to be quantitatively assessed in order that the correct design for the component and joining method is identified. There is a variety of fasteners, bolts, and rivets, made using a variety of materials. Aluminum rivets are often used to join aluminum components in an aircraft. Rivets do not perform well under tension loading, but perform better in shear, thus limiting the application specifically for these purposes. Bolts are designed to clamp material together, and even though the bolt may be adequate to support a particular structure and load requirement, consideration must also be given to the modulus of elasticity and stiffness of the components that are being clamped together. Therefore, an understanding of each of the materials being clamped or joined together is necessary. Bolts manufactured from steel, for instance, have coatings applied in order to help protect them from corrosion. The use of composites translates to a reduced number of rivets and fasteners to be used. Drilling of holes into composites to insert fasteners poses many challenges because the fibers are damaged, a region of high stress concentration may be formed, and the hole is a site for the ingress of water or moisture. The insertion of aluminum fasteners or the contact of aluminum components with carbon fibers creates galvanic corrosion due to the large difference in electrical potential. Titanium alloy (Ti-6Al-4V) is a typical fastener where there is composite joining due to its better compatibility (elimination of galvanic corrosion) and increased strength properties. Substitution of rivets and fasteners for welding is also on the increase in aircraft because laser beam welding (LBW) and friction stir welding both reduce cracking, porosity, and better properties achieved due to deeper penetration, and reduce the heat-affected zone which would typically be undesirable with conventional arc welding such as metal inert gas and tungsten inert gas welding. The shear and compressive stresses are increased, and fatigue cracking, weight, and cost are also reduced as a result of LBW, including the elimination of stresses and corrosion associated with rivets and the elimination of adhesives. Dissimilar metals such as the 7000 series and the 2000 series can be joined with a filler metal compatible to both metals to mitigate galvanic corrosion.\",\"PeriodicalId\":348912,\"journal\":{\"name\":\"Encyclopedia of Aluminum and Its Alloys\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Encyclopedia of Aluminum and Its Alloys\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1201/9781351045636-140000240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Encyclopedia of Aluminum and Its Alloys","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9781351045636-140000240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

飞机部件的选择和制造需要充分考虑环境、温度、载荷、兼容性等因素。当飞机上需要连接铝合金或纤维增强聚合物复合材料等结构材料时,需要对紧固件、螺栓、铆钉、粘合剂和其他方法的选择进行定量评估,以便确定正确的部件设计和连接方法。有各种各样的紧固件、螺栓和铆钉,使用各种材料制成。铝铆钉常用于连接飞机上的铝部件。铆钉在拉伸载荷下表现不佳,但在剪切载荷下表现较好,因此限制了专门用于这些目的的应用。螺栓的设计是为了将材料夹紧在一起,即使螺栓可能足以支持特定的结构和负载要求,也必须考虑到被夹紧在一起的部件的弹性模量和刚度。因此,了解夹紧或连接在一起的每种材料是必要的。例如,用钢制造的螺栓涂上涂层以防止腐蚀。复合材料的使用可以减少铆钉和紧固件的使用。在复合材料上钻孔以插入紧固件带来了许多挑战,因为纤维会被破坏,可能形成高应力集中区域,并且孔是水或湿气进入的场所。铝紧固件的插入或铝部件与碳纤维的接触,由于电势差大,会产生电偶腐蚀。钛合金(Ti-6Al-4V)是一种典型的紧固件,因为它具有更好的相容性(消除电偶腐蚀)和更高的强度性能。在飞机上,用铆钉和紧固件代替焊接也在增加,因为激光束焊接(LBW)和搅拌摩擦焊接都减少了裂纹、气孔和更好的性能,这是由于更深的渗透,并且减少了传统电弧焊(如金属惰性气体和钨惰性气体焊接)通常不希望出现的热影响区。由于LBW,剪切和压缩应力增加,疲劳开裂,重量和成本也减少了,包括消除了与铆钉相关的应力和腐蚀以及消除了粘合剂。不同的金属,如7000系列和2000系列,可以与两种金属兼容的填充金属连接,以减轻电偶腐蚀。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aerospace Fasteners: Use in Structural Applications
Aircraft components need to be selected and manufactured to adequately combat the environment, temperature, loading, compatibility, and so on. When structural materials such as aluminum alloys or fiber-reinforced polymer composites need to be joined in aircraft, the selection of fasteners, bolts, rivets, adhesives, and other methods need to be quantitatively assessed in order that the correct design for the component and joining method is identified. There is a variety of fasteners, bolts, and rivets, made using a variety of materials. Aluminum rivets are often used to join aluminum components in an aircraft. Rivets do not perform well under tension loading, but perform better in shear, thus limiting the application specifically for these purposes. Bolts are designed to clamp material together, and even though the bolt may be adequate to support a particular structure and load requirement, consideration must also be given to the modulus of elasticity and stiffness of the components that are being clamped together. Therefore, an understanding of each of the materials being clamped or joined together is necessary. Bolts manufactured from steel, for instance, have coatings applied in order to help protect them from corrosion. The use of composites translates to a reduced number of rivets and fasteners to be used. Drilling of holes into composites to insert fasteners poses many challenges because the fibers are damaged, a region of high stress concentration may be formed, and the hole is a site for the ingress of water or moisture. The insertion of aluminum fasteners or the contact of aluminum components with carbon fibers creates galvanic corrosion due to the large difference in electrical potential. Titanium alloy (Ti-6Al-4V) is a typical fastener where there is composite joining due to its better compatibility (elimination of galvanic corrosion) and increased strength properties. Substitution of rivets and fasteners for welding is also on the increase in aircraft because laser beam welding (LBW) and friction stir welding both reduce cracking, porosity, and better properties achieved due to deeper penetration, and reduce the heat-affected zone which would typically be undesirable with conventional arc welding such as metal inert gas and tungsten inert gas welding. The shear and compressive stresses are increased, and fatigue cracking, weight, and cost are also reduced as a result of LBW, including the elimination of stresses and corrosion associated with rivets and the elimination of adhesives. Dissimilar metals such as the 7000 series and the 2000 series can be joined with a filler metal compatible to both metals to mitigate galvanic corrosion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Welding Parameters for Aluminum Alloys Computer Vision for Fault Detection in Aluminum Castings Quality Parameters for High-Pressure Diecastings 6XXX Alloys: Chemical Composition and Heat Treatment Quench Factor Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1