petm后热液期的碳同位素地层学与哺乳动物更替

Sarah J. Widlansky, Ross Secord, K. Snell, A. Chew, W. Clyde
{"title":"petm后热液期的碳同位素地层学与哺乳动物更替","authors":"Sarah J. Widlansky, Ross Secord, K. Snell, A. Chew, W. Clyde","doi":"10.5194/CP-2021-83","DOIUrl":null,"url":null,"abstract":"Abstract. Paleogene hyperthermals, including the Paleocene-Eocene Thermal Maximum (PETM) and several other smaller events, represent global perturbations to Earth's climate system and are characterized by warmer temperatures, shifts in floral and faunal communities, and hydrologic changes. These events are identified in the geologic record globally by negative carbon isotope excursions (CIEs), resulting from the input of isotopically light carbon into Earth's atmosphere. Much about the causes and effects of hyperthermals remains uncertain, including whether all hyperthermals are caused by the same underlying processes, how biotic effects scale with the magnitude of hyperthermals, and why CIEs are larger in paleosol carbonates relative to marine records. Resolving these questions is crucial for their full interpretation and application to future climate scenarios. The Fifteenmile Creek area of the central Bighorn Basin, Wyoming U.S.A., exposes an early Eocene floodplain sedimentary sequence that preserves paleosol carbonates and an extensive fossil mammal collection. Previous analysis of faunal assemblages revealed two pulses of mammal turnover and changes in diversity interpreted to correlate with the ETM2 and H2 hyperthermals that immediately follow the PETM. This was, however, based on long distance correlation of chemostratigraphic records. We present new carbon isotope stratigraphy using micrite δ13C values from paleosol carbonate nodules preserved in and between richly fossiliferous localities at Fifteenmile Creek to identify the stratigraphic positions of ETM2 and H2. Additionally, we used differential GPS elevations to establish a new stratigraphic framework that assists in correlation and is independent from the biostratigraphy and previous composite lithostratigraphic sections from the area. Carbon isotope results show that the ETM2 and H2 hyperthermals, and possibly the subsequent I1 hyperthermal, are recorded at Fifteenmile Creek. ETM2 and H2 overlap with the two previously recognized pulses of mammal turnover. Comparisons between the new chemostratigraphy and fossil record suggest that the recorded amplitude of these faunal changes may be muted as a result of some stratigraphic averaging of fossils. The CIEs for these hyperthermals are also smaller in magnitude than in more northerly Bighorn Basin records. We suggest that basin-wide differences in soil moisture and/or vegetation could contribute to variable CIE amplitudes in this and other terrestrial records.\n","PeriodicalId":263057,"journal":{"name":"Climate of The Past Discussions","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon isotope stratigraphy and mammal turnover during post-PETM hyperthermals\",\"authors\":\"Sarah J. Widlansky, Ross Secord, K. Snell, A. Chew, W. Clyde\",\"doi\":\"10.5194/CP-2021-83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. Paleogene hyperthermals, including the Paleocene-Eocene Thermal Maximum (PETM) and several other smaller events, represent global perturbations to Earth's climate system and are characterized by warmer temperatures, shifts in floral and faunal communities, and hydrologic changes. These events are identified in the geologic record globally by negative carbon isotope excursions (CIEs), resulting from the input of isotopically light carbon into Earth's atmosphere. Much about the causes and effects of hyperthermals remains uncertain, including whether all hyperthermals are caused by the same underlying processes, how biotic effects scale with the magnitude of hyperthermals, and why CIEs are larger in paleosol carbonates relative to marine records. Resolving these questions is crucial for their full interpretation and application to future climate scenarios. The Fifteenmile Creek area of the central Bighorn Basin, Wyoming U.S.A., exposes an early Eocene floodplain sedimentary sequence that preserves paleosol carbonates and an extensive fossil mammal collection. Previous analysis of faunal assemblages revealed two pulses of mammal turnover and changes in diversity interpreted to correlate with the ETM2 and H2 hyperthermals that immediately follow the PETM. This was, however, based on long distance correlation of chemostratigraphic records. We present new carbon isotope stratigraphy using micrite δ13C values from paleosol carbonate nodules preserved in and between richly fossiliferous localities at Fifteenmile Creek to identify the stratigraphic positions of ETM2 and H2. Additionally, we used differential GPS elevations to establish a new stratigraphic framework that assists in correlation and is independent from the biostratigraphy and previous composite lithostratigraphic sections from the area. Carbon isotope results show that the ETM2 and H2 hyperthermals, and possibly the subsequent I1 hyperthermal, are recorded at Fifteenmile Creek. ETM2 and H2 overlap with the two previously recognized pulses of mammal turnover. Comparisons between the new chemostratigraphy and fossil record suggest that the recorded amplitude of these faunal changes may be muted as a result of some stratigraphic averaging of fossils. The CIEs for these hyperthermals are also smaller in magnitude than in more northerly Bighorn Basin records. We suggest that basin-wide differences in soil moisture and/or vegetation could contribute to variable CIE amplitudes in this and other terrestrial records.\\n\",\"PeriodicalId\":263057,\"journal\":{\"name\":\"Climate of The Past Discussions\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Climate of The Past Discussions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5194/CP-2021-83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Climate of The Past Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/CP-2021-83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要古近纪热活动,包括古新世-始新世热极大期(PETM)和其他几个较小的事件,代表了地球气候系统的全球扰动,其特征是温度升高、植物和动物群落的变化以及水文变化。这些事件在全球地质记录中由负碳同位素漂移(CIEs)确定,这是由同位素轻碳输入地球大气引起的。关于超热现象的成因和影响仍有许多不确定的地方,包括是否所有的超热现象都是由相同的潜在过程引起的,生物效应如何与超热现象的大小成比例,以及为什么古土壤碳酸盐中的CIEs相对于海洋记录更大。解决这些问题对于它们的全面解释和对未来气候情景的应用至关重要。美国怀俄明州大角盆地中部的15英里河地区,暴露了始新世早期的洪泛平原沉积序列,保存了古土壤碳酸盐和大量的哺乳动物化石。先前对动物群组合的分析揭示了哺乳动物更替和多样性变化的两个脉冲,这些脉冲被解释为与紧跟PETM之后的ETM2和H2超热相关。然而,这是基于化学地层记录的远距离对比。我们利用保存在15哩溪富含化石的地区及其之间的古土壤碳酸盐结核的泥晶δ13C值建立了新的碳同位素地层学,以确定ETM2和H2的地层位置。此外,我们利用不同的GPS海拔建立了一个新的地层格架,有助于对比,并且独立于该地区的生物地层学和以前的复合岩石地层剖面。碳同位素结果表明,15哩溪记录了ETM2和H2热液,并可能记录了随后的I1热液。ETM2和H2与之前认识到的哺乳动物转换的两个脉冲重叠。新的化学地层学与化石记录的比较表明,这些动物群变化的记录幅度可能由于化石的一些地层平均而减弱。这些超级热液的CIEs在量级上也比更北的大角盆地记录要小。我们认为,在这个和其他陆地记录中,土壤湿度和/或植被的流域范围差异可能导致CIE振幅的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Carbon isotope stratigraphy and mammal turnover during post-PETM hyperthermals
Abstract. Paleogene hyperthermals, including the Paleocene-Eocene Thermal Maximum (PETM) and several other smaller events, represent global perturbations to Earth's climate system and are characterized by warmer temperatures, shifts in floral and faunal communities, and hydrologic changes. These events are identified in the geologic record globally by negative carbon isotope excursions (CIEs), resulting from the input of isotopically light carbon into Earth's atmosphere. Much about the causes and effects of hyperthermals remains uncertain, including whether all hyperthermals are caused by the same underlying processes, how biotic effects scale with the magnitude of hyperthermals, and why CIEs are larger in paleosol carbonates relative to marine records. Resolving these questions is crucial for their full interpretation and application to future climate scenarios. The Fifteenmile Creek area of the central Bighorn Basin, Wyoming U.S.A., exposes an early Eocene floodplain sedimentary sequence that preserves paleosol carbonates and an extensive fossil mammal collection. Previous analysis of faunal assemblages revealed two pulses of mammal turnover and changes in diversity interpreted to correlate with the ETM2 and H2 hyperthermals that immediately follow the PETM. This was, however, based on long distance correlation of chemostratigraphic records. We present new carbon isotope stratigraphy using micrite δ13C values from paleosol carbonate nodules preserved in and between richly fossiliferous localities at Fifteenmile Creek to identify the stratigraphic positions of ETM2 and H2. Additionally, we used differential GPS elevations to establish a new stratigraphic framework that assists in correlation and is independent from the biostratigraphy and previous composite lithostratigraphic sections from the area. Carbon isotope results show that the ETM2 and H2 hyperthermals, and possibly the subsequent I1 hyperthermal, are recorded at Fifteenmile Creek. ETM2 and H2 overlap with the two previously recognized pulses of mammal turnover. Comparisons between the new chemostratigraphy and fossil record suggest that the recorded amplitude of these faunal changes may be muted as a result of some stratigraphic averaging of fossils. The CIEs for these hyperthermals are also smaller in magnitude than in more northerly Bighorn Basin records. We suggest that basin-wide differences in soil moisture and/or vegetation could contribute to variable CIE amplitudes in this and other terrestrial records.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spring onset and seasonality patterns during the Lateglacial in the eastern Baltic region Simulated range of mid-Holocene precipitation changes to extended lakes and wetlands over North Africa Supplementary material to "Low-latitude climate change linked to high-latitude glaciation during the Late Paleozoic Ice Age: evidence from the terrigenous detrital kaolinite" Holocene wildfire regimes in forested peatlands in western Siberia: interaction between peatland moisture conditions and the composition of plant functional types Summer sea-ice variability on the Antarctic margin during the last glacial period reconstructed from snow petrel (Pagodroma nivea) stomach-oil deposits
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1