纤维取向和改性对竹纤维增强UPE/ESOA混杂复合材料性能的影响

Shivkumari Panda, D. Behera, P. Rath
{"title":"纤维取向和改性对竹纤维增强UPE/ESOA混杂复合材料性能的影响","authors":"Shivkumari Panda, D. Behera, P. Rath","doi":"10.4028/www.scientific.net/DF.23.40","DOIUrl":null,"url":null,"abstract":"In this chapter, bamboo fiber with parallel and anti parallel orientation has been introduced in the Unsaturated polyester (UPE)/ Epoxidized Soybean Oil Acrylate (ESOA) blend. The reinforced fiber mats were treated with NaOH and NaOH-silane to improve the stiffness and strength of the composites. Parallelly oriented fiber reinforced composite showed improved glass transition temperature. The mechanical, thermal, storage modulus and tribological properties are highly improved for parallel fiber oriented composite. Also alkali-silane treated fiber reinforced composite show optimum properties than alkali treated and raw fiber based composites. Anti parallelly oriented composites show reduced performance due to pull out of fibers. The FTIR analysis of all the composites was observed for the first time with valid reaction mechanism. So this new partially biodegradable composite can open a new door for potential application in various fields. This composite may be used as an alternating material to wood for various indoor and outdoor applications.","PeriodicalId":311581,"journal":{"name":"Diffusion Foundations","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Fiber Orientation and Modification on the Behavior of Bamboo Fiber Reinforced UPE/ESOA Hybrid Composite\",\"authors\":\"Shivkumari Panda, D. Behera, P. Rath\",\"doi\":\"10.4028/www.scientific.net/DF.23.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this chapter, bamboo fiber with parallel and anti parallel orientation has been introduced in the Unsaturated polyester (UPE)/ Epoxidized Soybean Oil Acrylate (ESOA) blend. The reinforced fiber mats were treated with NaOH and NaOH-silane to improve the stiffness and strength of the composites. Parallelly oriented fiber reinforced composite showed improved glass transition temperature. The mechanical, thermal, storage modulus and tribological properties are highly improved for parallel fiber oriented composite. Also alkali-silane treated fiber reinforced composite show optimum properties than alkali treated and raw fiber based composites. Anti parallelly oriented composites show reduced performance due to pull out of fibers. The FTIR analysis of all the composites was observed for the first time with valid reaction mechanism. So this new partially biodegradable composite can open a new door for potential application in various fields. This composite may be used as an alternating material to wood for various indoor and outdoor applications.\",\"PeriodicalId\":311581,\"journal\":{\"name\":\"Diffusion Foundations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diffusion Foundations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/www.scientific.net/DF.23.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diffusion Foundations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/DF.23.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章介绍了不饱和聚酯(UPE)/环氧大豆油丙烯酸酯(ESOA)共混物中具有平行取向和反平行取向的竹纤维。采用氢氧化钠和氢氧化钠硅烷对增强纤维垫进行处理,提高了复合材料的刚度和强度。平行取向纤维增强复合材料的玻璃化转变温度有所提高。平行纤维取向复合材料的力学性能、热性能、存储模量和摩擦学性能都得到了很大的改善。碱硅烷处理的纤维增强复合材料性能优于碱处理和原纤维基复合材料。抗平行取向复合材料表现出性能下降,由于拔出的纤维。首次对复合材料进行了FTIR分析,证实了反应机理。因此,这种部分可生物降解的新型复合材料为其在各个领域的潜在应用打开了新的大门。这种复合材料可作为木材的交替材料用于各种室内和室外应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Fiber Orientation and Modification on the Behavior of Bamboo Fiber Reinforced UPE/ESOA Hybrid Composite
In this chapter, bamboo fiber with parallel and anti parallel orientation has been introduced in the Unsaturated polyester (UPE)/ Epoxidized Soybean Oil Acrylate (ESOA) blend. The reinforced fiber mats were treated with NaOH and NaOH-silane to improve the stiffness and strength of the composites. Parallelly oriented fiber reinforced composite showed improved glass transition temperature. The mechanical, thermal, storage modulus and tribological properties are highly improved for parallel fiber oriented composite. Also alkali-silane treated fiber reinforced composite show optimum properties than alkali treated and raw fiber based composites. Anti parallelly oriented composites show reduced performance due to pull out of fibers. The FTIR analysis of all the composites was observed for the first time with valid reaction mechanism. So this new partially biodegradable composite can open a new door for potential application in various fields. This composite may be used as an alternating material to wood for various indoor and outdoor applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Kinetics and Thermodynamics of Fe-X (X= Al, Cr, Mn, Ti, B, and C) Melts under High Pressure Fundamental Core Effects in Transition Metal High-Entropy Alloys: “High-Entropy” and “Sluggish Diffusion” Effects Novel Interdiffusion Analysis in Multicomponent Alloys - Part 1: Application to Ternary Alloys Techniques of Tracer Diffusion Measurements in Metals, Alloys and Compounds History and People of Solid-State Diffusion – An Overview
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1