{"title":"纤维取向和改性对竹纤维增强UPE/ESOA混杂复合材料性能的影响","authors":"Shivkumari Panda, D. Behera, P. Rath","doi":"10.4028/www.scientific.net/DF.23.40","DOIUrl":null,"url":null,"abstract":"In this chapter, bamboo fiber with parallel and anti parallel orientation has been introduced in the Unsaturated polyester (UPE)/ Epoxidized Soybean Oil Acrylate (ESOA) blend. The reinforced fiber mats were treated with NaOH and NaOH-silane to improve the stiffness and strength of the composites. Parallelly oriented fiber reinforced composite showed improved glass transition temperature. The mechanical, thermal, storage modulus and tribological properties are highly improved for parallel fiber oriented composite. Also alkali-silane treated fiber reinforced composite show optimum properties than alkali treated and raw fiber based composites. Anti parallelly oriented composites show reduced performance due to pull out of fibers. The FTIR analysis of all the composites was observed for the first time with valid reaction mechanism. So this new partially biodegradable composite can open a new door for potential application in various fields. This composite may be used as an alternating material to wood for various indoor and outdoor applications.","PeriodicalId":311581,"journal":{"name":"Diffusion Foundations","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Fiber Orientation and Modification on the Behavior of Bamboo Fiber Reinforced UPE/ESOA Hybrid Composite\",\"authors\":\"Shivkumari Panda, D. Behera, P. Rath\",\"doi\":\"10.4028/www.scientific.net/DF.23.40\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this chapter, bamboo fiber with parallel and anti parallel orientation has been introduced in the Unsaturated polyester (UPE)/ Epoxidized Soybean Oil Acrylate (ESOA) blend. The reinforced fiber mats were treated with NaOH and NaOH-silane to improve the stiffness and strength of the composites. Parallelly oriented fiber reinforced composite showed improved glass transition temperature. The mechanical, thermal, storage modulus and tribological properties are highly improved for parallel fiber oriented composite. Also alkali-silane treated fiber reinforced composite show optimum properties than alkali treated and raw fiber based composites. Anti parallelly oriented composites show reduced performance due to pull out of fibers. The FTIR analysis of all the composites was observed for the first time with valid reaction mechanism. So this new partially biodegradable composite can open a new door for potential application in various fields. This composite may be used as an alternating material to wood for various indoor and outdoor applications.\",\"PeriodicalId\":311581,\"journal\":{\"name\":\"Diffusion Foundations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diffusion Foundations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/www.scientific.net/DF.23.40\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diffusion Foundations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/DF.23.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Effect of Fiber Orientation and Modification on the Behavior of Bamboo Fiber Reinforced UPE/ESOA Hybrid Composite
In this chapter, bamboo fiber with parallel and anti parallel orientation has been introduced in the Unsaturated polyester (UPE)/ Epoxidized Soybean Oil Acrylate (ESOA) blend. The reinforced fiber mats were treated with NaOH and NaOH-silane to improve the stiffness and strength of the composites. Parallelly oriented fiber reinforced composite showed improved glass transition temperature. The mechanical, thermal, storage modulus and tribological properties are highly improved for parallel fiber oriented composite. Also alkali-silane treated fiber reinforced composite show optimum properties than alkali treated and raw fiber based composites. Anti parallelly oriented composites show reduced performance due to pull out of fibers. The FTIR analysis of all the composites was observed for the first time with valid reaction mechanism. So this new partially biodegradable composite can open a new door for potential application in various fields. This composite may be used as an alternating material to wood for various indoor and outdoor applications.