利用网络内经验采样加速分布式深度强化学习

Masaki Furukawa, Hiroki Matsutani
{"title":"利用网络内经验采样加速分布式深度强化学习","authors":"Masaki Furukawa, Hiroki Matsutani","doi":"10.1109/pdp55904.2022.00020","DOIUrl":null,"url":null,"abstract":"A computing cluster that interconnects multiple compute nodes is used to accelerate distributed reinforcement learning based on DQN (Deep Q-Network). In distributed reinforcement learning, Actor nodes acquire experiences by interacting with a given environment and a Learner node optimizes their DQN model. Since data transfer between Actor and Learner nodes increases depending on the number of Actor nodes and their experience size, communication overhead between them is one of major performance bottlenecks. In this paper, their communication performance is optimized by using DPDK (Data Plane Development Kit). Specifically, DPDK-based low-latency experience replay memory server is deployed between Actor and Learner nodes interconnected with a 40GbE (40Gbit Ethernet) network. Evaluation results show that, as a network optimization technique, kernel bypassing by DPDK reduces network access latencies to a shared memory server by 32.7% to 58.9%. As another network optimization technique, an in-network experience replay memory server between Actor and Learner nodes reduces access latencies to the experience replay memory by 11.7% to 28.1% and communication latencies for prioritized experience sampling by 21.9% to 29.1%.","PeriodicalId":210759,"journal":{"name":"2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating Distributed Deep Reinforcement Learning by In-Network Experience Sampling\",\"authors\":\"Masaki Furukawa, Hiroki Matsutani\",\"doi\":\"10.1109/pdp55904.2022.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A computing cluster that interconnects multiple compute nodes is used to accelerate distributed reinforcement learning based on DQN (Deep Q-Network). In distributed reinforcement learning, Actor nodes acquire experiences by interacting with a given environment and a Learner node optimizes their DQN model. Since data transfer between Actor and Learner nodes increases depending on the number of Actor nodes and their experience size, communication overhead between them is one of major performance bottlenecks. In this paper, their communication performance is optimized by using DPDK (Data Plane Development Kit). Specifically, DPDK-based low-latency experience replay memory server is deployed between Actor and Learner nodes interconnected with a 40GbE (40Gbit Ethernet) network. Evaluation results show that, as a network optimization technique, kernel bypassing by DPDK reduces network access latencies to a shared memory server by 32.7% to 58.9%. As another network optimization technique, an in-network experience replay memory server between Actor and Learner nodes reduces access latencies to the experience replay memory by 11.7% to 28.1% and communication latencies for prioritized experience sampling by 21.9% to 29.1%.\",\"PeriodicalId\":210759,\"journal\":{\"name\":\"2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/pdp55904.2022.00020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/pdp55904.2022.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于DQN (Deep Q-Network)的分布式强化学习,采用多个计算节点互连的计算集群来加速分布式强化学习。在分布式强化学习中,Actor节点通过与给定环境的交互获得经验,而Learner节点优化其DQN模型。由于Actor节点和学习者节点之间的数据传输取决于Actor节点的数量和它们的经验大小,因此它们之间的通信开销是主要的性能瓶颈之一。本文利用DPDK (Data Plane Development Kit)对其通信性能进行了优化。具体来说,基于dpdk的低延迟体验重放内存服务器部署在Actor和Learner节点之间,通过40GbE (40Gbit以太网)网络相互连接。评估结果表明,作为一种网络优化技术,DPDK绕过内核可将共享内存服务器的网络访问延迟降低32.7%至58.9%。作为另一种网络优化技术,行动者和学习者节点之间的网络内体验重放内存服务器将体验重放内存的访问延迟降低了11.7%至28.1%,优先体验采样的通信延迟降低了21.9%至29.1%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerating Distributed Deep Reinforcement Learning by In-Network Experience Sampling
A computing cluster that interconnects multiple compute nodes is used to accelerate distributed reinforcement learning based on DQN (Deep Q-Network). In distributed reinforcement learning, Actor nodes acquire experiences by interacting with a given environment and a Learner node optimizes their DQN model. Since data transfer between Actor and Learner nodes increases depending on the number of Actor nodes and their experience size, communication overhead between them is one of major performance bottlenecks. In this paper, their communication performance is optimized by using DPDK (Data Plane Development Kit). Specifically, DPDK-based low-latency experience replay memory server is deployed between Actor and Learner nodes interconnected with a 40GbE (40Gbit Ethernet) network. Evaluation results show that, as a network optimization technique, kernel bypassing by DPDK reduces network access latencies to a shared memory server by 32.7% to 58.9%. As another network optimization technique, an in-network experience replay memory server between Actor and Learner nodes reduces access latencies to the experience replay memory by 11.7% to 28.1% and communication latencies for prioritized experience sampling by 21.9% to 29.1%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Some Experiments on High Performance Anomaly Detection Advancing Database System Operators with Near-Data Processing A Parallel Approximation Algorithm for the Steiner Forest Problem NoaSci: A Numerical Object Array Library for I/O of Scientific Applications on Object Storage Load Balancing of the Parallel Execution of Two Dimensional Partitioned Cellular Automata
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1