{"title":"基于碳排放流追踪理论的碳责任追踪","authors":"Xiaofeng Ren, Yiqing Wang, Hailong Gao, Xuequan Xiao, Yushan Zhou, Hao Zhou","doi":"10.1109/CEEPE58418.2023.10166302","DOIUrl":null,"url":null,"abstract":"This paper proposes an improved model for tracing carbon emissions in power systems, which to some extent addresses the lack of fairness in traditional methods. The model, based on the AC power flow calculation considering network losses, first identifies key indicators for carbon emission flow calculations, such as nodal carbon intensity. Then, it calculates the carbon flow rates for each branch and node, resulting in the distribution of carbon emission flows in the system.; The improved forward carbon emission flow tracing algorithm and reverse carbon emission flow tracing algorithm are then applied to fairly and reasonably allocate the controversial carbon emission losses of the network to the power sources and loads. The results of the case study tests show that the method improves the accuracy and fairness of the carbon emission allocation in the network, making carbon responsibility traceable.","PeriodicalId":431552,"journal":{"name":"2023 6th International Conference on Energy, Electrical and Power Engineering (CEEPE)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tracing Carbon Responsibility Based on Carbon Emission Flow Tracking Theory\",\"authors\":\"Xiaofeng Ren, Yiqing Wang, Hailong Gao, Xuequan Xiao, Yushan Zhou, Hao Zhou\",\"doi\":\"10.1109/CEEPE58418.2023.10166302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an improved model for tracing carbon emissions in power systems, which to some extent addresses the lack of fairness in traditional methods. The model, based on the AC power flow calculation considering network losses, first identifies key indicators for carbon emission flow calculations, such as nodal carbon intensity. Then, it calculates the carbon flow rates for each branch and node, resulting in the distribution of carbon emission flows in the system.; The improved forward carbon emission flow tracing algorithm and reverse carbon emission flow tracing algorithm are then applied to fairly and reasonably allocate the controversial carbon emission losses of the network to the power sources and loads. The results of the case study tests show that the method improves the accuracy and fairness of the carbon emission allocation in the network, making carbon responsibility traceable.\",\"PeriodicalId\":431552,\"journal\":{\"name\":\"2023 6th International Conference on Energy, Electrical and Power Engineering (CEEPE)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 6th International Conference on Energy, Electrical and Power Engineering (CEEPE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEEPE58418.2023.10166302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 6th International Conference on Energy, Electrical and Power Engineering (CEEPE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEEPE58418.2023.10166302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tracing Carbon Responsibility Based on Carbon Emission Flow Tracking Theory
This paper proposes an improved model for tracing carbon emissions in power systems, which to some extent addresses the lack of fairness in traditional methods. The model, based on the AC power flow calculation considering network losses, first identifies key indicators for carbon emission flow calculations, such as nodal carbon intensity. Then, it calculates the carbon flow rates for each branch and node, resulting in the distribution of carbon emission flows in the system.; The improved forward carbon emission flow tracing algorithm and reverse carbon emission flow tracing algorithm are then applied to fairly and reasonably allocate the controversial carbon emission losses of the network to the power sources and loads. The results of the case study tests show that the method improves the accuracy and fairness of the carbon emission allocation in the network, making carbon responsibility traceable.