使用神经网络的语音识别

S. Khan, G. Sharma, P. Rao
{"title":"使用神经网络的语音识别","authors":"S. Khan, G. Sharma, P. Rao","doi":"10.1109/ICIT.2000.854165","DOIUrl":null,"url":null,"abstract":"The paper presents a continuous speech recognition system based on a neural network concept. An articulatory-phonetic feature extraction network (APFEN) is used for extracting articulatory-phonetic features. This is followed by a coarticulation network for reducing the effect of coarticulation present in the continuous speech. Algorithms for segmentation and then identification of phonemes are given.","PeriodicalId":405648,"journal":{"name":"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Speech recognition using neural networks\",\"authors\":\"S. Khan, G. Sharma, P. Rao\",\"doi\":\"10.1109/ICIT.2000.854165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a continuous speech recognition system based on a neural network concept. An articulatory-phonetic feature extraction network (APFEN) is used for extracting articulatory-phonetic features. This is followed by a coarticulation network for reducing the effect of coarticulation present in the continuous speech. Algorithms for segmentation and then identification of phonemes are given.\",\"PeriodicalId\":405648,\"journal\":{\"name\":\"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2000.854165\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2000.854165","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种基于神经网络概念的连续语音识别系统。语音特征提取网络(APFEN)用于语音特征提取。接下来是一个协同发音网络,用于减少连续语音中存在的协同发音的影响。给出了分割和识别音素的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Speech recognition using neural networks
The paper presents a continuous speech recognition system based on a neural network concept. An articulatory-phonetic feature extraction network (APFEN) is used for extracting articulatory-phonetic features. This is followed by a coarticulation network for reducing the effect of coarticulation present in the continuous speech. Algorithms for segmentation and then identification of phonemes are given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification of nonlinear nonautonomous state space systems from input-output measurements On stabilizing gains far digital control systems Developing an experimental mobile robot-ROVEL Failure detection/management in launch vehicle avionics Static UPS failures-origin and possible prevention
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1