{"title":"20兆瓦光伏太阳能发电场对公用事业配电网的谐波影响","authors":"R. Varma, S. Rahman, T. Vanderheide, M. Dang","doi":"10.1109/JPETS.2016.2550601","DOIUrl":null,"url":null,"abstract":"This paper presents one of the first studies of the harmonic impact of a significantly large photovoltaic (PV) solar farm of 20 MW in a utility distribution system. This solar farm is a constituent of the 80-MW PV solar farm in Sarnia, Ontario, which is so far the largest solar farm in Canada. The utility network is modeled in detail using the commercial grade PSCAD/EMTDC software, which is validated through load flow studies conducted by CYME software and correlated with SCADA measurements. The validated network model is used for network resonance study and harmonics impact analysis of the solar farms under different network conditions. The harmonics data instrumented for several months were provided by the transmission utility at the two solar farm units and at the main feeder substation. These data were utilized for extensive harmonic impact studies with widely different short-circuit levels and network resonance conditions. This paper presents the detailed procedure adopted for performing such harmonic impact studies. It is concluded that this large solar farm may not cause any substantial voltage distortion on the distribution network during steady-state operating conditions. However, recommendations are made for utilities to perform such studies to ensure the safe operation of critical loads.","PeriodicalId":170601,"journal":{"name":"IEEE Power and Energy Technology Systems Journal","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"38","resultStr":"{\"title\":\"Harmonic Impact of a 20-MW PV Solar Farm on a Utility Distribution Network\",\"authors\":\"R. Varma, S. Rahman, T. Vanderheide, M. Dang\",\"doi\":\"10.1109/JPETS.2016.2550601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents one of the first studies of the harmonic impact of a significantly large photovoltaic (PV) solar farm of 20 MW in a utility distribution system. This solar farm is a constituent of the 80-MW PV solar farm in Sarnia, Ontario, which is so far the largest solar farm in Canada. The utility network is modeled in detail using the commercial grade PSCAD/EMTDC software, which is validated through load flow studies conducted by CYME software and correlated with SCADA measurements. The validated network model is used for network resonance study and harmonics impact analysis of the solar farms under different network conditions. The harmonics data instrumented for several months were provided by the transmission utility at the two solar farm units and at the main feeder substation. These data were utilized for extensive harmonic impact studies with widely different short-circuit levels and network resonance conditions. This paper presents the detailed procedure adopted for performing such harmonic impact studies. It is concluded that this large solar farm may not cause any substantial voltage distortion on the distribution network during steady-state operating conditions. However, recommendations are made for utilities to perform such studies to ensure the safe operation of critical loads.\",\"PeriodicalId\":170601,\"journal\":{\"name\":\"IEEE Power and Energy Technology Systems Journal\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"38\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Power and Energy Technology Systems Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/JPETS.2016.2550601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Power and Energy Technology Systems Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JPETS.2016.2550601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Harmonic Impact of a 20-MW PV Solar Farm on a Utility Distribution Network
This paper presents one of the first studies of the harmonic impact of a significantly large photovoltaic (PV) solar farm of 20 MW in a utility distribution system. This solar farm is a constituent of the 80-MW PV solar farm in Sarnia, Ontario, which is so far the largest solar farm in Canada. The utility network is modeled in detail using the commercial grade PSCAD/EMTDC software, which is validated through load flow studies conducted by CYME software and correlated with SCADA measurements. The validated network model is used for network resonance study and harmonics impact analysis of the solar farms under different network conditions. The harmonics data instrumented for several months were provided by the transmission utility at the two solar farm units and at the main feeder substation. These data were utilized for extensive harmonic impact studies with widely different short-circuit levels and network resonance conditions. This paper presents the detailed procedure adopted for performing such harmonic impact studies. It is concluded that this large solar farm may not cause any substantial voltage distortion on the distribution network during steady-state operating conditions. However, recommendations are made for utilities to perform such studies to ensure the safe operation of critical loads.