使用多语言转换模型的字素到音素转换

Omnia S. ElSaadany, Benjamin Suter
{"title":"使用多语言转换模型的字素到音素转换","authors":"Omnia S. ElSaadany, Benjamin Suter","doi":"10.18653/v1/2020.sigmorphon-1.7","DOIUrl":null,"url":null,"abstract":"In this paper, we describe our three submissions to the SIGMORPHON 2020 shared task 1 on grapheme-to-phoneme conversion for 15 languages. We experimented with a single multilingual transformer model. We observed that the multilingual model achieves results on par with our separately trained monolingual models and is even able to avoid a few of the errors made by the monolingual models.","PeriodicalId":186158,"journal":{"name":"Special Interest Group on Computational Morphology and Phonology Workshop","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Grapheme-to-Phoneme Conversion with a Multilingual Transformer Model\",\"authors\":\"Omnia S. ElSaadany, Benjamin Suter\",\"doi\":\"10.18653/v1/2020.sigmorphon-1.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe our three submissions to the SIGMORPHON 2020 shared task 1 on grapheme-to-phoneme conversion for 15 languages. We experimented with a single multilingual transformer model. We observed that the multilingual model achieves results on par with our separately trained monolingual models and is even able to avoid a few of the errors made by the monolingual models.\",\"PeriodicalId\":186158,\"journal\":{\"name\":\"Special Interest Group on Computational Morphology and Phonology Workshop\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Special Interest Group on Computational Morphology and Phonology Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2020.sigmorphon-1.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Special Interest Group on Computational Morphology and Phonology Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2020.sigmorphon-1.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们描述了我们向SIGMORPHON 2020共享任务1提交的三份关于15种语言的字素到音素转换的报告。我们尝试了一个单一的多语言转换器模型。我们观察到,多语言模型达到了与我们单独训练的单语言模型相当的结果,甚至能够避免单语言模型所犯的一些错误。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Grapheme-to-Phoneme Conversion with a Multilingual Transformer Model
In this paper, we describe our three submissions to the SIGMORPHON 2020 shared task 1 on grapheme-to-phoneme conversion for 15 languages. We experimented with a single multilingual transformer model. We observed that the multilingual model achieves results on par with our separately trained monolingual models and is even able to avoid a few of the errors made by the monolingual models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Colexifications for Bootstrapping Cross-lingual Datasets: The Case of Phonology, Concreteness, and Affectiveness KU-CST at the SIGMORPHON 2020 Task 2 on Unsupervised Morphological Paradigm Completion Linguist vs. Machine: Rapid Development of Finite-State Morphological Grammars Exploring Neural Architectures And Techniques For Typologically Diverse Morphological Inflection SIGMORPHON 2020 Task 0 System Description: ETH Zürich Team
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1