学习连通性:情景图卷积网络用于面部表情识别

Jinzhao Zhou, Xingming Zhang, Yang Liu
{"title":"学习连通性:情景图卷积网络用于面部表情识别","authors":"Jinzhao Zhou, Xingming Zhang, Yang Liu","doi":"10.1109/VCIP49819.2020.9301773","DOIUrl":null,"url":null,"abstract":"Previous studies recognizing expressions with facial graph topology mostly use a fixed facial graph structure established by the physical dependencies among facial landmarks. However, the static graph structure inherently lacks flexibility in non-standardized scenarios. This paper proposes a dynamic-graph-based method for effective and robust facial expression recognition. To capture action-specific dependencies among facial components, we introduce a link inference structure, called the Situational Link Generation Module (SLGM). We further propose the Situational Graph Convolution Network (SGCN) to automatically detect and recognize facial expression in various conditions. Experimental evaluations on two lab-constrained datasets, CK+ and Oulu, along with an in-the-wild dataset, AFEW, show the superior performance of the proposed method. Additional experiments on occluded facial images further demonstrate the robustness of our strategy.","PeriodicalId":431880,"journal":{"name":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":"13 3-4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Learning the Connectivity: Situational Graph Convolution Network for Facial Expression Recognition\",\"authors\":\"Jinzhao Zhou, Xingming Zhang, Yang Liu\",\"doi\":\"10.1109/VCIP49819.2020.9301773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Previous studies recognizing expressions with facial graph topology mostly use a fixed facial graph structure established by the physical dependencies among facial landmarks. However, the static graph structure inherently lacks flexibility in non-standardized scenarios. This paper proposes a dynamic-graph-based method for effective and robust facial expression recognition. To capture action-specific dependencies among facial components, we introduce a link inference structure, called the Situational Link Generation Module (SLGM). We further propose the Situational Graph Convolution Network (SGCN) to automatically detect and recognize facial expression in various conditions. Experimental evaluations on two lab-constrained datasets, CK+ and Oulu, along with an in-the-wild dataset, AFEW, show the superior performance of the proposed method. Additional experiments on occluded facial images further demonstrate the robustness of our strategy.\",\"PeriodicalId\":431880,\"journal\":{\"name\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"volume\":\"13 3-4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VCIP49819.2020.9301773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP49819.2020.9301773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

以往基于面部图拓扑的表情识别研究大多采用由面部标志之间的物理依赖关系建立的固定的面部图结构。然而,静态图结构在非标准化场景中固有地缺乏灵活性。提出了一种基于动态图的有效鲁棒面部表情识别方法。为了捕获面部组件之间特定于动作的依赖关系,我们引入了一个链接推理结构,称为情境链接生成模块(SLGM)。我们进一步提出情景图卷积网络(Situational Graph Convolution Network, SGCN)来自动检测和识别各种情况下的面部表情。在两个实验室约束数据集(CK+和Oulu)以及野外数据集(AFEW)上进行的实验评估表明,所提出的方法具有优越的性能。在被遮挡的面部图像上的实验进一步证明了我们的策略的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning the Connectivity: Situational Graph Convolution Network for Facial Expression Recognition
Previous studies recognizing expressions with facial graph topology mostly use a fixed facial graph structure established by the physical dependencies among facial landmarks. However, the static graph structure inherently lacks flexibility in non-standardized scenarios. This paper proposes a dynamic-graph-based method for effective and robust facial expression recognition. To capture action-specific dependencies among facial components, we introduce a link inference structure, called the Situational Link Generation Module (SLGM). We further propose the Situational Graph Convolution Network (SGCN) to automatically detect and recognize facial expression in various conditions. Experimental evaluations on two lab-constrained datasets, CK+ and Oulu, along with an in-the-wild dataset, AFEW, show the superior performance of the proposed method. Additional experiments on occluded facial images further demonstrate the robustness of our strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Mixed Appearance-based and Coding Distortion-based CNN Fusion Approach for In-loop Filtering in Video Coding APL: Adaptive Preloading of Short Video with Lyapunov Optimization A Novel Visual Analysis Oriented Rate Control Scheme for HEVC A Theory of Occlusion for Improving Rendering Quality of Views A Progressive Fast CU Split Decision Scheme for AVS3
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1