基于模块的乳腺癌生物标志物发现

Yuji Zhang, J. Xuan, R. Clarke, H. Ressom
{"title":"基于模块的乳腺癌生物标志物发现","authors":"Yuji Zhang, J. Xuan, R. Clarke, H. Ressom","doi":"10.1109/BIBM.2010.5706590","DOIUrl":null,"url":null,"abstract":"The availability of genome-wide biological network data opens up new possibilities to discover novel biomarkers and elucidate cancer-related complex mechanisms at network level. In this paper, we propose a novel module-based feature selection framework, which integrates biological network information and gene expression data to identify biomarkers, not as individual genes but as functional modules. Also, a large-scale analysis of ensemble feature selection concept is presented. The method allows combining features selected from multiple runs with various data subsampling to increase the reliability and classification accuracy of the final set of selected features. The results from four breast cancer studies demonstrate that the identified module biomarkers achieve: i) higher classification accuracy in independent validation datasets; ii) better reproducibility than individual gene biomarkers; iii) improved biological interpretability; and iv) enhanced enrichment in cancer-related “disease drivers”.","PeriodicalId":275098,"journal":{"name":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Module-based biomarker discovery in breast cancer\",\"authors\":\"Yuji Zhang, J. Xuan, R. Clarke, H. Ressom\",\"doi\":\"10.1109/BIBM.2010.5706590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The availability of genome-wide biological network data opens up new possibilities to discover novel biomarkers and elucidate cancer-related complex mechanisms at network level. In this paper, we propose a novel module-based feature selection framework, which integrates biological network information and gene expression data to identify biomarkers, not as individual genes but as functional modules. Also, a large-scale analysis of ensemble feature selection concept is presented. The method allows combining features selected from multiple runs with various data subsampling to increase the reliability and classification accuracy of the final set of selected features. The results from four breast cancer studies demonstrate that the identified module biomarkers achieve: i) higher classification accuracy in independent validation datasets; ii) better reproducibility than individual gene biomarkers; iii) improved biological interpretability; and iv) enhanced enrichment in cancer-related “disease drivers”.\",\"PeriodicalId\":275098,\"journal\":{\"name\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBM.2010.5706590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM.2010.5706590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

全基因组生物网络数据的可用性为在网络水平上发现新的生物标志物和阐明癌症相关的复杂机制开辟了新的可能性。在本文中,我们提出了一种新的基于模块的特征选择框架,该框架将生物网络信息和基因表达数据相结合,以识别生物标志物,而不是作为单个基因,而是作为功能模块。同时,提出了一种大规模分析集成特征选择的概念。该方法允许将从多次运行中选择的特征与各种数据子采样相结合,以提高最终选择特征集的可靠性和分类精度。四项乳腺癌研究的结果表明,所鉴定的模块生物标志物在独立验证数据集中实现了更高的分类准确性;Ii)比单个基因生物标志物具有更好的再现性;Iii)提高生物可解释性;iv)与癌症相关的“疾病驱动因子”的富集增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Module-based biomarker discovery in breast cancer
The availability of genome-wide biological network data opens up new possibilities to discover novel biomarkers and elucidate cancer-related complex mechanisms at network level. In this paper, we propose a novel module-based feature selection framework, which integrates biological network information and gene expression data to identify biomarkers, not as individual genes but as functional modules. Also, a large-scale analysis of ensemble feature selection concept is presented. The method allows combining features selected from multiple runs with various data subsampling to increase the reliability and classification accuracy of the final set of selected features. The results from four breast cancer studies demonstrate that the identified module biomarkers achieve: i) higher classification accuracy in independent validation datasets; ii) better reproducibility than individual gene biomarkers; iii) improved biological interpretability; and iv) enhanced enrichment in cancer-related “disease drivers”.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A gene ranking method using text-mining for the identification of disease related genes alns — A searchable and filterable sequence alignment format A fast and noise-adaptive rough-fuzzy hybrid algorithm for medical image segmentation An accurate, automatic method for markerless alignment of electron tomographic images Unsupervised integration of multiple protein disorder predictors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1