基于离散2型模糊集的Takagi-Sugeno推理的两步模糊推理新方法

O. Uncu, I. Turksen
{"title":"基于离散2型模糊集的Takagi-Sugeno推理的两步模糊推理新方法","authors":"O. Uncu, I. Turksen","doi":"10.1109/NAFIPS.2003.1226751","DOIUrl":null,"url":null,"abstract":"Fuzzy system modeling (FSM) is one of the most prominent tools in order to capture the hidden behavior of highly nonlinear systems with uncertainty. In this paper, a new type 2 FSM approach is proposed in order to increase the predictive power of traditional Takagi-Sugeno fuzzy system models. One of the biggest problems of type 2 fuzzy system models is computational complexity. In order to remedy this problem, the proposed inference mechanism performs type reduction as a first step. Then, the type 1 inference mechanisms are utilized to deduce a model output for a given crisp observation.","PeriodicalId":153530,"journal":{"name":"22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A new two-step fuzzy inference approach based on Takagi-Sugeno inference using discrete type 2 fuzzy sets\",\"authors\":\"O. Uncu, I. Turksen\",\"doi\":\"10.1109/NAFIPS.2003.1226751\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fuzzy system modeling (FSM) is one of the most prominent tools in order to capture the hidden behavior of highly nonlinear systems with uncertainty. In this paper, a new type 2 FSM approach is proposed in order to increase the predictive power of traditional Takagi-Sugeno fuzzy system models. One of the biggest problems of type 2 fuzzy system models is computational complexity. In order to remedy this problem, the proposed inference mechanism performs type reduction as a first step. Then, the type 1 inference mechanisms are utilized to deduce a model output for a given crisp observation.\",\"PeriodicalId\":153530,\"journal\":{\"name\":\"22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAFIPS.2003.1226751\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2003.1226751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

模糊系统建模(FSM)是研究具有不确定性的高度非线性系统隐藏行为的重要工具之一。为了提高传统Takagi-Sugeno模糊系统模型的预测能力,本文提出了一种新的2型FSM方法。二类模糊系统模型最大的问题之一是计算复杂度。为了解决这个问题,建议的推理机制首先执行类型约简。然后,利用类型1推理机制为给定的清晰观测推断模型输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new two-step fuzzy inference approach based on Takagi-Sugeno inference using discrete type 2 fuzzy sets
Fuzzy system modeling (FSM) is one of the most prominent tools in order to capture the hidden behavior of highly nonlinear systems with uncertainty. In this paper, a new type 2 FSM approach is proposed in order to increase the predictive power of traditional Takagi-Sugeno fuzzy system models. One of the biggest problems of type 2 fuzzy system models is computational complexity. In order to remedy this problem, the proposed inference mechanism performs type reduction as a first step. Then, the type 1 inference mechanisms are utilized to deduce a model output for a given crisp observation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy-rough nearest-neighbor classification approach Fault detection and diagnosis in turbine engines using fuzzy logic How the number of measured dimensions affects fuzzy causal measures of vitamin therapy for hyperhomocysteinemia in stroke patients The fuzzy rough approximation decomposability Fuzzy-neuro system for bridge health monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1