{"title":"双曲型非线性数字锁相环的性能分析","authors":"S. Kandeepan, S. Reisenfeld","doi":"10.1109/ICICS.2005.1689209","DOIUrl":null,"url":null,"abstract":"The treatment of phase locked loops (PLL) has been heavily looked into over the past several decades on its performances and analysis, and is a very old topic. However the usage of it has never been reduced with the rapid evolvement of various open loop and closed loop systems. In this paper we analyse the performance of an arctan based digital phase locked loop (DPLL) with a hyperbolic nonlinearity for single-tone carrier tracking. We purposely introduce the nonlinearity for improved performance of the closed loop system. We look at the acquisition performance of the DPLL by considering the phase plane portrait and the lock-in range of the loop. The steady state (SS) performance of the loop is analysed by considering the open loop SS statistical distribution of the phase noise","PeriodicalId":425178,"journal":{"name":"2005 5th International Conference on Information Communications & Signal Processing","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Performance analysis of a Digital Phase-Locked Loop with a Hyperbolic Nonlinearity\",\"authors\":\"S. Kandeepan, S. Reisenfeld\",\"doi\":\"10.1109/ICICS.2005.1689209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The treatment of phase locked loops (PLL) has been heavily looked into over the past several decades on its performances and analysis, and is a very old topic. However the usage of it has never been reduced with the rapid evolvement of various open loop and closed loop systems. In this paper we analyse the performance of an arctan based digital phase locked loop (DPLL) with a hyperbolic nonlinearity for single-tone carrier tracking. We purposely introduce the nonlinearity for improved performance of the closed loop system. We look at the acquisition performance of the DPLL by considering the phase plane portrait and the lock-in range of the loop. The steady state (SS) performance of the loop is analysed by considering the open loop SS statistical distribution of the phase noise\",\"PeriodicalId\":425178,\"journal\":{\"name\":\"2005 5th International Conference on Information Communications & Signal Processing\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2005 5th International Conference on Information Communications & Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICS.2005.1689209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 5th International Conference on Information Communications & Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICS.2005.1689209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance analysis of a Digital Phase-Locked Loop with a Hyperbolic Nonlinearity
The treatment of phase locked loops (PLL) has been heavily looked into over the past several decades on its performances and analysis, and is a very old topic. However the usage of it has never been reduced with the rapid evolvement of various open loop and closed loop systems. In this paper we analyse the performance of an arctan based digital phase locked loop (DPLL) with a hyperbolic nonlinearity for single-tone carrier tracking. We purposely introduce the nonlinearity for improved performance of the closed loop system. We look at the acquisition performance of the DPLL by considering the phase plane portrait and the lock-in range of the loop. The steady state (SS) performance of the loop is analysed by considering the open loop SS statistical distribution of the phase noise