基于可变形模板和遗传算法的道路识别新方法

Tie Liu, N. Zheng, Hong Cheng, Zhengbei Xing
{"title":"基于可变形模板和遗传算法的道路识别新方法","authors":"Tie Liu, N. Zheng, Hong Cheng, Zhengbei Xing","doi":"10.1109/ITSC.2003.1252684","DOIUrl":null,"url":null,"abstract":"Road recognition based on vision navigation is an important task in intelligent vehicle research. Road image is usually influenced by shadows, noise and discontinuity of road contour, and this induces the traditional edge-based algorithm's robustness decrease greatly. To avoid negative influence from threshold selection, this paper presents a deformable template and genetic algorithm based road recognition algorithm. Firstly, preprocess road image with edge operator to get the edge information, then construct a deformable template model of road contour and its likelihood function which define the fitting degree for a given template deformable parameter, finally genetic algorithm is used to search the global maximal value of the likelihood function to get the optimal parameter of the deformable template model of road contour. Experimental results indicate that the algorithm has strong robustness for shadows, noise and discontinuity of road contour.","PeriodicalId":123155,"journal":{"name":"Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A novel approach of road recognition based on deformable template and genetic algorithm\",\"authors\":\"Tie Liu, N. Zheng, Hong Cheng, Zhengbei Xing\",\"doi\":\"10.1109/ITSC.2003.1252684\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Road recognition based on vision navigation is an important task in intelligent vehicle research. Road image is usually influenced by shadows, noise and discontinuity of road contour, and this induces the traditional edge-based algorithm's robustness decrease greatly. To avoid negative influence from threshold selection, this paper presents a deformable template and genetic algorithm based road recognition algorithm. Firstly, preprocess road image with edge operator to get the edge information, then construct a deformable template model of road contour and its likelihood function which define the fitting degree for a given template deformable parameter, finally genetic algorithm is used to search the global maximal value of the likelihood function to get the optimal parameter of the deformable template model of road contour. Experimental results indicate that the algorithm has strong robustness for shadows, noise and discontinuity of road contour.\",\"PeriodicalId\":123155,\"journal\":{\"name\":\"Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITSC.2003.1252684\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2003 IEEE International Conference on Intelligent Transportation Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2003.1252684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

基于视觉导航的道路识别是智能汽车研究的一个重要课题。道路图像通常会受到阴影、噪声和道路轮廓不连续性的影响,这使得传统的基于边缘的算法鲁棒性大大降低。为了避免阈值选择的负面影响,本文提出了一种基于可变形模板和遗传算法的道路识别算法。首先利用边缘算子对道路图像进行预处理,获取边缘信息,然后构造道路轮廓的可变形模板模型及其似然函数,该似然函数定义了给定模板可变形参数的拟合程度,最后利用遗传算法搜索似然函数的全局最大值,得到道路轮廓可变形模板模型的最优参数。实验结果表明,该算法对道路轮廓的阴影、噪声和不连续性具有较强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel approach of road recognition based on deformable template and genetic algorithm
Road recognition based on vision navigation is an important task in intelligent vehicle research. Road image is usually influenced by shadows, noise and discontinuity of road contour, and this induces the traditional edge-based algorithm's robustness decrease greatly. To avoid negative influence from threshold selection, this paper presents a deformable template and genetic algorithm based road recognition algorithm. Firstly, preprocess road image with edge operator to get the edge information, then construct a deformable template model of road contour and its likelihood function which define the fitting degree for a given template deformable parameter, finally genetic algorithm is used to search the global maximal value of the likelihood function to get the optimal parameter of the deformable template model of road contour. Experimental results indicate that the algorithm has strong robustness for shadows, noise and discontinuity of road contour.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study on ship manoeuvering control based on adaptive inverse control technology Formal design and analysis of FMS controller The application of spatial data mining in railway geographic information systems Dynamic vehicle routing problem using hybrid ant system Dynamic link travel time model in dynamic traffic assignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1