聚合概率判断

Magdalena Ivanovska, M. Slavkovik
{"title":"聚合概率判断","authors":"Magdalena Ivanovska, M. Slavkovik","doi":"10.4204/EPTCS.297.18","DOIUrl":null,"url":null,"abstract":"In this paper we explore the application of methods for classical judgment aggregation in pooling probabilistic opinions on logically related issues. For this reason, we first modify the Boolean judgment aggregation framework in the way that allows handling probabilistic judgments and then define probabilistic aggregation functions obtained by generalization of the classical ones. In addition, we discuss essential desirable properties for the aggregation functions and explore impossibility results.","PeriodicalId":118894,"journal":{"name":"Theoretical Aspects of Rationality and Knowledge","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Aggregating Probabilistic Judgments\",\"authors\":\"Magdalena Ivanovska, M. Slavkovik\",\"doi\":\"10.4204/EPTCS.297.18\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we explore the application of methods for classical judgment aggregation in pooling probabilistic opinions on logically related issues. For this reason, we first modify the Boolean judgment aggregation framework in the way that allows handling probabilistic judgments and then define probabilistic aggregation functions obtained by generalization of the classical ones. In addition, we discuss essential desirable properties for the aggregation functions and explore impossibility results.\",\"PeriodicalId\":118894,\"journal\":{\"name\":\"Theoretical Aspects of Rationality and Knowledge\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theoretical Aspects of Rationality and Knowledge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.297.18\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Aspects of Rationality and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.297.18","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文探讨了经典判断聚合方法在逻辑相关问题的概率意见汇集中的应用。为此,我们首先对布尔判断聚合框架进行修改,使其能够处理概率判断,然后定义由经典判断泛化得到的概率聚合函数。此外,我们还讨论了聚集函数的基本理想性质,并探讨了不可能结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aggregating Probabilistic Judgments
In this paper we explore the application of methods for classical judgment aggregation in pooling probabilistic opinions on logically related issues. For this reason, we first modify the Boolean judgment aggregation framework in the way that allows handling probabilistic judgments and then define probabilistic aggregation functions obtained by generalization of the classical ones. In addition, we discuss essential desirable properties for the aggregation functions and explore impossibility results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Strengthening Consistency Results in Modal Logic A Logic-Based Analysis of Responsibility Epistemic Logics of Structured Intensional Groups Complete Conditional Type Structures (Extended Abstract) Selling Data to a Competitor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1