分布式LSI:并行预处理和矢量共享

R. Bradford
{"title":"分布式LSI:并行预处理和矢量共享","authors":"R. Bradford","doi":"10.1109/ISI.2015.7165973","DOIUrl":null,"url":null,"abstract":"The technique of latent semantic indexing (LSI) has a wide variety of uses in intelligence and security informatics applications. LSI processing generates high-dimensional vectors that are used to represent individual items of interest and the features of which those items are composed. Historically, LSI representation vectors have been generated in a single computing environment (workstation, server, or VM instance). However, this is not a requirement. This paper describes two approaches to distributing elements of LSI processing. The first, parallelization of the preprocessing stage, can significantly decrease the time required for creation of LSI indexes. The second, vector sharing, can dramatically improve security in distributed LSI environments.","PeriodicalId":292352,"journal":{"name":"2015 IEEE International Conference on Intelligence and Security Informatics (ISI)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed LSI: Parallel preprocessing and vector sharing\",\"authors\":\"R. Bradford\",\"doi\":\"10.1109/ISI.2015.7165973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The technique of latent semantic indexing (LSI) has a wide variety of uses in intelligence and security informatics applications. LSI processing generates high-dimensional vectors that are used to represent individual items of interest and the features of which those items are composed. Historically, LSI representation vectors have been generated in a single computing environment (workstation, server, or VM instance). However, this is not a requirement. This paper describes two approaches to distributing elements of LSI processing. The first, parallelization of the preprocessing stage, can significantly decrease the time required for creation of LSI indexes. The second, vector sharing, can dramatically improve security in distributed LSI environments.\",\"PeriodicalId\":292352,\"journal\":{\"name\":\"2015 IEEE International Conference on Intelligence and Security Informatics (ISI)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Intelligence and Security Informatics (ISI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISI.2015.7165973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Intelligence and Security Informatics (ISI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2015.7165973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

潜在语义索引技术在情报和安全信息学中有着广泛的应用。大规模集成电路处理产生高维向量,用于表示感兴趣的单个项目和组成这些项目的特征。从历史上看,LSI表示向量是在单个计算环境(工作站、服务器或VM实例)中生成的。然而,这不是必需的。本文介绍了两种分配LSI处理元件的方法。首先,预处理阶段的并行化可以显著减少创建LSI索引所需的时间。第二,矢量共享,可以显著提高分布式LSI环境中的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distributed LSI: Parallel preprocessing and vector sharing
The technique of latent semantic indexing (LSI) has a wide variety of uses in intelligence and security informatics applications. LSI processing generates high-dimensional vectors that are used to represent individual items of interest and the features of which those items are composed. Historically, LSI representation vectors have been generated in a single computing environment (workstation, server, or VM instance). However, this is not a requirement. This paper describes two approaches to distributing elements of LSI processing. The first, parallelization of the preprocessing stage, can significantly decrease the time required for creation of LSI indexes. The second, vector sharing, can dramatically improve security in distributed LSI environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling emotion entrainment of online users in emergency events Exploring the effect of permission notice on users' initial trust to an application store: The case of China's Android application market Multi-objective evolutionary algorithms and multiagent models for optimizing police dispatch Personality based public sentiment classification in microblog Social sensor analytics: Making sense of network models in social media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1