图像压缩采用自关联神经网络和嵌入式零树编码

S. Patnaik, R. Pal
{"title":"图像压缩采用自关联神经网络和嵌入式零树编码","authors":"S. Patnaik, R. Pal","doi":"10.1109/SPAWC.2001.923933","DOIUrl":null,"url":null,"abstract":"This paper presents an image compression method using auto-associative neural network and embedded zero-tree coding. The role of the neural network (NN) is to decompose the image stage by stage, which enables analysis similar to wavelet decomposition. This works on the principle of principal component extraction (PCE). Network training is achieved through a recursive least squares (RLS) algorithm. The coefficients are arranged in a four-quadrant sub-band structure. The zero-tree coding algorithm is employed to quantize the coefficients. The system outperforms the embedded zero-tree wavelet scheme in a rate-distortion sense, with best perceptual quality for a given compression ratio.","PeriodicalId":435867,"journal":{"name":"2001 IEEE Third Workshop on Signal Processing Advances in Wireless Communications (SPAWC'01). Workshop Proceedings (Cat. No.01EX471)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Image compression using auto-associative neural network and embedded zero-tree coding\",\"authors\":\"S. Patnaik, R. Pal\",\"doi\":\"10.1109/SPAWC.2001.923933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an image compression method using auto-associative neural network and embedded zero-tree coding. The role of the neural network (NN) is to decompose the image stage by stage, which enables analysis similar to wavelet decomposition. This works on the principle of principal component extraction (PCE). Network training is achieved through a recursive least squares (RLS) algorithm. The coefficients are arranged in a four-quadrant sub-band structure. The zero-tree coding algorithm is employed to quantize the coefficients. The system outperforms the embedded zero-tree wavelet scheme in a rate-distortion sense, with best perceptual quality for a given compression ratio.\",\"PeriodicalId\":435867,\"journal\":{\"name\":\"2001 IEEE Third Workshop on Signal Processing Advances in Wireless Communications (SPAWC'01). Workshop Proceedings (Cat. No.01EX471)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2001 IEEE Third Workshop on Signal Processing Advances in Wireless Communications (SPAWC'01). Workshop Proceedings (Cat. No.01EX471)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPAWC.2001.923933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2001 IEEE Third Workshop on Signal Processing Advances in Wireless Communications (SPAWC'01). Workshop Proceedings (Cat. No.01EX471)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2001.923933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种基于自关联神经网络和嵌入式零树编码的图像压缩方法。神经网络(NN)的作用是逐步分解图像,使分析类似于小波分解。这是基于主成分提取(PCE)的原理。通过递归最小二乘(RLS)算法实现网络训练。系数以四象限子带结构排列。采用零树编码算法对系数进行量化。该系统在率失真方面优于嵌入式零树小波方案,在给定的压缩比下具有最佳的感知质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image compression using auto-associative neural network and embedded zero-tree coding
This paper presents an image compression method using auto-associative neural network and embedded zero-tree coding. The role of the neural network (NN) is to decompose the image stage by stage, which enables analysis similar to wavelet decomposition. This works on the principle of principal component extraction (PCE). Network training is achieved through a recursive least squares (RLS) algorithm. The coefficients are arranged in a four-quadrant sub-band structure. The zero-tree coding algorithm is employed to quantize the coefficients. The system outperforms the embedded zero-tree wavelet scheme in a rate-distortion sense, with best perceptual quality for a given compression ratio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Realistic channel model considerations in UMTS downlink capacity with space-time block coding Signal detection and timing estimation via summation likelihood ratio test ESPAR antennas-based signal processing for DS-CDMA signal waveforms in ad hoc network systems New results on blind asynchronous CDMA receivers using code-constrained CMA A flexible RAKE receiver architecture for WCDMA mobile terminals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1