碳纳米管网络尺寸和界面相对纸纳米复合材料I型断裂的影响

Masoud Yekani Fard, R. Raman, Yesenia Orozco, Aditi Tata
{"title":"碳纳米管网络尺寸和界面相对纸纳米复合材料I型断裂的影响","authors":"Masoud Yekani Fard, R. Raman, Yesenia Orozco, Aditi Tata","doi":"10.1115/imece2022-95573","DOIUrl":null,"url":null,"abstract":"\n Buckypaper (BP) is a complex 3D CNT structure with randomly distributed CNTs. The size of the CNT network and interphase can potentially affect the fracture behavior of BP nanocomposite on a larger length scale. For multiwall carbon nanotube BP, the main pore sizes range between 20–35 nm (intrabundle) and 65–110 nm (inter bundle). Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) have proven nano and sub-micron inhomogeneities in BP membranes. These inhomogeneities affect the macroscale mechanical response of BP membranes due to the local high modulus mismatch among CNT particles, the CNT networks, and the polymer. The geometry (shape and size) and the spatial locations (depth and distance between the networks) of the buried CNT networks are amongst critical parameters for the degree of the mechanical mismatch. Atomic Force Microscopy-based Peak Force Quantitative Nanomechanics Mapping (PFQNM) technique is used to quantify the nano- and micro-properties of CNT networks and interphase. Double Cantilever Beam (DCB) specimens are used for mode I fracture characterization. The compliance Calibration technique is used to calculate the initiation and propagation energy release rate. The authors use the Weibull model to examine material properties’ statistical distribution. Weibull statistics link the probability of an event such as CNT network size and interphase thickness.","PeriodicalId":146276,"journal":{"name":"Volume 3: Advanced Materials: Design, Processing, Characterization and Applications; Advances in Aerospace Technology","volume":"214 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of the CNT Network Size and Interphase on Mode I Fracture of Buckypaper Nanocomposites\",\"authors\":\"Masoud Yekani Fard, R. Raman, Yesenia Orozco, Aditi Tata\",\"doi\":\"10.1115/imece2022-95573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Buckypaper (BP) is a complex 3D CNT structure with randomly distributed CNTs. The size of the CNT network and interphase can potentially affect the fracture behavior of BP nanocomposite on a larger length scale. For multiwall carbon nanotube BP, the main pore sizes range between 20–35 nm (intrabundle) and 65–110 nm (inter bundle). Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) have proven nano and sub-micron inhomogeneities in BP membranes. These inhomogeneities affect the macroscale mechanical response of BP membranes due to the local high modulus mismatch among CNT particles, the CNT networks, and the polymer. The geometry (shape and size) and the spatial locations (depth and distance between the networks) of the buried CNT networks are amongst critical parameters for the degree of the mechanical mismatch. Atomic Force Microscopy-based Peak Force Quantitative Nanomechanics Mapping (PFQNM) technique is used to quantify the nano- and micro-properties of CNT networks and interphase. Double Cantilever Beam (DCB) specimens are used for mode I fracture characterization. The compliance Calibration technique is used to calculate the initiation and propagation energy release rate. The authors use the Weibull model to examine material properties’ statistical distribution. Weibull statistics link the probability of an event such as CNT network size and interphase thickness.\",\"PeriodicalId\":146276,\"journal\":{\"name\":\"Volume 3: Advanced Materials: Design, Processing, Characterization and Applications; Advances in Aerospace Technology\",\"volume\":\"214 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3: Advanced Materials: Design, Processing, Characterization and Applications; Advances in Aerospace Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2022-95573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Advanced Materials: Design, Processing, Characterization and Applications; Advances in Aerospace Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2022-95573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

巴克纸(BP)是一种复杂的三维碳纳米管结构,碳纳米管是随机分布的。碳纳米管网络和界面相的大小可能会影响BP纳米复合材料在更大长度尺度上的断裂行为。对于多壁碳纳米管BP,主要孔径在20 ~ 35 nm(胞内)和65 ~ 110 nm(束间)之间。扫描电子显微镜(SEM)和原子力显微镜(AFM)已经证明了BP膜的纳米和亚微米不均匀性。由于碳纳米管颗粒、碳纳米管网络和聚合物之间的局部高模量不匹配,这些不均匀性影响了BP膜的宏观力学响应。埋置碳纳米管网络的几何形状(形状和大小)和空间位置(网络之间的深度和距离)是机械不匹配程度的关键参数之一。基于原子力显微镜的峰值力定量纳米力学映射(PFQNM)技术用于量化碳纳米管网络和界面的纳米和微观性质。双悬臂梁(DCB)试样用于I型断裂表征。采用柔度校准技术计算了起始和传播能量释放率。作者使用威布尔模型来检验材料性能的统计分布。威布尔统计将碳纳米管网络大小和界面厚度等事件的概率联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of the CNT Network Size and Interphase on Mode I Fracture of Buckypaper Nanocomposites
Buckypaper (BP) is a complex 3D CNT structure with randomly distributed CNTs. The size of the CNT network and interphase can potentially affect the fracture behavior of BP nanocomposite on a larger length scale. For multiwall carbon nanotube BP, the main pore sizes range between 20–35 nm (intrabundle) and 65–110 nm (inter bundle). Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) have proven nano and sub-micron inhomogeneities in BP membranes. These inhomogeneities affect the macroscale mechanical response of BP membranes due to the local high modulus mismatch among CNT particles, the CNT networks, and the polymer. The geometry (shape and size) and the spatial locations (depth and distance between the networks) of the buried CNT networks are amongst critical parameters for the degree of the mechanical mismatch. Atomic Force Microscopy-based Peak Force Quantitative Nanomechanics Mapping (PFQNM) technique is used to quantify the nano- and micro-properties of CNT networks and interphase. Double Cantilever Beam (DCB) specimens are used for mode I fracture characterization. The compliance Calibration technique is used to calculate the initiation and propagation energy release rate. The authors use the Weibull model to examine material properties’ statistical distribution. Weibull statistics link the probability of an event such as CNT network size and interphase thickness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Statistical Analysis of Strain Rate Dependency of the Mechanical Properties of Unidirectional CFRE Materials Thermo-Mechanical Process Modeling of Additive Friction Stir Deposition of Ti-6Al-4V Alloy Nonlinear Transient Response of Isotropic and Composite Structures With Variable Kinematic Beam and Plate Finite Elements Bolt Loosening Detection for a Steel Frame Multi-Story Structure Based on Deep Learning and Digital Image Processing Preparation of Hybrid Alkaline Cement Based on Natural Zeolite As Sustainable Building Material
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1