行人轨迹群模式发现的张量方法

Abdullah M. Sawas, Abdullah Abuolaim, M. Afifi, M. Papagelis
{"title":"行人轨迹群模式发现的张量方法","authors":"Abdullah M. Sawas, Abdullah Abuolaim, M. Afifi, M. Papagelis","doi":"10.1109/MDM.2018.00024","DOIUrl":null,"url":null,"abstract":"Mining large-scale trajectory data streams (of moving objects) has been of ever increasing research interest due to an abundance of modern tracking devices and its large number of critical applications. In this paper, we are interested in mining group patterns of moving objects. Group pattern mining describes a special type of trajectory mining task that requires to efficiently discover trajectories of objects that are found in close proximity to each other for a period of time. In particular, we focus on trajectories of pedestrians coming from motion video analysis and we are interested in interactive analysis and exploration of group dynamics, including various definitions of group gathering and dispersion. Towards this end, we present a suite of (three) tensor-based methods for efficient discovery of evolving groups of pedestrians. Traditional approaches to solve the problem heavily rely on well-defined clustering algorithms to discover groups of pedestrians at each time point, and then post-process these groups to discover groups that satisfy specific group pattern semantics, including time constraints. In contrast, our proposed methods are based on efficiently discovering pairs of pedestrians that move together over time, under varying conditions. Pairs of pedestrians are subsequently used as a building block for effectively discovering groups of pedestrians. The suite of proposed methods provides the ability to adapt to many different scenarios and application requirements. Furthermore, a query-based search method is provided that allows for interactive exploration and analysis of group dynamics over time and space. Through experiments on real data, we demonstrate the effectiveness of our methods on discovering group patterns of pedestrian trajectories against sensible baselines, for a varying range of conditions. In addition, a visual testing is performed on real motion video to assert the group dynamics discovered by each method.","PeriodicalId":205319,"journal":{"name":"2018 19th IEEE International Conference on Mobile Data Management (MDM)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Tensor Methods for Group Pattern Discovery of Pedestrian Trajectories\",\"authors\":\"Abdullah M. Sawas, Abdullah Abuolaim, M. Afifi, M. Papagelis\",\"doi\":\"10.1109/MDM.2018.00024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mining large-scale trajectory data streams (of moving objects) has been of ever increasing research interest due to an abundance of modern tracking devices and its large number of critical applications. In this paper, we are interested in mining group patterns of moving objects. Group pattern mining describes a special type of trajectory mining task that requires to efficiently discover trajectories of objects that are found in close proximity to each other for a period of time. In particular, we focus on trajectories of pedestrians coming from motion video analysis and we are interested in interactive analysis and exploration of group dynamics, including various definitions of group gathering and dispersion. Towards this end, we present a suite of (three) tensor-based methods for efficient discovery of evolving groups of pedestrians. Traditional approaches to solve the problem heavily rely on well-defined clustering algorithms to discover groups of pedestrians at each time point, and then post-process these groups to discover groups that satisfy specific group pattern semantics, including time constraints. In contrast, our proposed methods are based on efficiently discovering pairs of pedestrians that move together over time, under varying conditions. Pairs of pedestrians are subsequently used as a building block for effectively discovering groups of pedestrians. The suite of proposed methods provides the ability to adapt to many different scenarios and application requirements. Furthermore, a query-based search method is provided that allows for interactive exploration and analysis of group dynamics over time and space. Through experiments on real data, we demonstrate the effectiveness of our methods on discovering group patterns of pedestrian trajectories against sensible baselines, for a varying range of conditions. In addition, a visual testing is performed on real motion video to assert the group dynamics discovered by each method.\",\"PeriodicalId\":205319,\"journal\":{\"name\":\"2018 19th IEEE International Conference on Mobile Data Management (MDM)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 19th IEEE International Conference on Mobile Data Management (MDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MDM.2018.00024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 19th IEEE International Conference on Mobile Data Management (MDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MDM.2018.00024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

由于大量的现代跟踪设备及其大量的关键应用,挖掘大规模轨迹数据流(运动物体)已经成为越来越多的研究兴趣。在本文中,我们感兴趣的是挖掘运动物体的群模式。组模式挖掘描述了一种特殊类型的轨迹挖掘任务,该任务要求有效地发现在一段时间内彼此接近的对象的轨迹。我们特别关注来自运动视频分析的行人轨迹,我们对群体动力学的互动分析和探索感兴趣,包括群体聚集和分散的各种定义。为此,我们提出了一套(三)基于张量的方法来有效地发现不断变化的行人群体。传统的解决方法严重依赖于定义良好的聚类算法来发现每个时间点的行人群体,然后对这些群体进行后处理,以发现满足特定群体模式语义(包括时间约束)的群体。相比之下,我们提出的方法是基于有效地发现在不同条件下随时间一起移动的行人对。随后,将行人对用作有效发现行人群的构建块。所建议的方法套件提供了适应许多不同场景和应用程序需求的能力。此外,提供了一种基于查询的搜索方法,该方法允许在时间和空间上对群体动态进行交互式探索和分析。通过对真实数据的实验,我们证明了我们的方法在不同条件下根据合理基线发现行人轨迹组模式的有效性。此外,还对真实运动视频进行了视觉测试,以验证每种方法发现的群体动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tensor Methods for Group Pattern Discovery of Pedestrian Trajectories
Mining large-scale trajectory data streams (of moving objects) has been of ever increasing research interest due to an abundance of modern tracking devices and its large number of critical applications. In this paper, we are interested in mining group patterns of moving objects. Group pattern mining describes a special type of trajectory mining task that requires to efficiently discover trajectories of objects that are found in close proximity to each other for a period of time. In particular, we focus on trajectories of pedestrians coming from motion video analysis and we are interested in interactive analysis and exploration of group dynamics, including various definitions of group gathering and dispersion. Towards this end, we present a suite of (three) tensor-based methods for efficient discovery of evolving groups of pedestrians. Traditional approaches to solve the problem heavily rely on well-defined clustering algorithms to discover groups of pedestrians at each time point, and then post-process these groups to discover groups that satisfy specific group pattern semantics, including time constraints. In contrast, our proposed methods are based on efficiently discovering pairs of pedestrians that move together over time, under varying conditions. Pairs of pedestrians are subsequently used as a building block for effectively discovering groups of pedestrians. The suite of proposed methods provides the ability to adapt to many different scenarios and application requirements. Furthermore, a query-based search method is provided that allows for interactive exploration and analysis of group dynamics over time and space. Through experiments on real data, we demonstrate the effectiveness of our methods on discovering group patterns of pedestrian trajectories against sensible baselines, for a varying range of conditions. In addition, a visual testing is performed on real motion video to assert the group dynamics discovered by each method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FMS: Managing Crowdsourced Indoor Signals with the Fingerprint Management Studio Stochastic Shortest Path Finding in Path-Centric Uncertain Road Networks Concept for Evaluation of Techniques for Trajectory Distance Measures VIPTRA: Visualization and Interactive Processing on Big Trajectory Data DCount - A Probabilistic Algorithm for Accurately Disaggregating Building Occupant Counts into Room Counts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1