基于核方法的手写体自编码器特征提取研究

Van Quan Dang, Yan Pei
{"title":"基于核方法的手写体自编码器特征提取研究","authors":"Van Quan Dang, Yan Pei","doi":"10.1109/ICAWST.2018.8517169","DOIUrl":null,"url":null,"abstract":"We use kernel method-based autoencoder in feature extraction application and evaluate its performance with a public handwriting database. Neural network-based autoencoder is an unsupervised algorithm and model that tries to learn an approximation function so as to extract features from data. Kernel method-based autoencoder has the same function compared with neural network-based autoencoder, but uses kernel methods to implement linear and non-linear data transformation. We use a handwriting dataset to evaluate kernel-based autoencoder, and examine the result by mean square error estimator, structural similarity index and peak signal-to-noise ratio for measuring image quality. We also investigate parameters of kernel functions to observe changes in the performance of the autoencoder. We found that effectiveness of kernel method-based autoencoder depends on the selection of kernel function and its parameter.","PeriodicalId":277939,"journal":{"name":"2018 9th International Conference on Awareness Science and Technology (iCAST)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Study on Feature Extraction of Handwriting Data Using Kernel Method-Based Autoencoder\",\"authors\":\"Van Quan Dang, Yan Pei\",\"doi\":\"10.1109/ICAWST.2018.8517169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use kernel method-based autoencoder in feature extraction application and evaluate its performance with a public handwriting database. Neural network-based autoencoder is an unsupervised algorithm and model that tries to learn an approximation function so as to extract features from data. Kernel method-based autoencoder has the same function compared with neural network-based autoencoder, but uses kernel methods to implement linear and non-linear data transformation. We use a handwriting dataset to evaluate kernel-based autoencoder, and examine the result by mean square error estimator, structural similarity index and peak signal-to-noise ratio for measuring image quality. We also investigate parameters of kernel functions to observe changes in the performance of the autoencoder. We found that effectiveness of kernel method-based autoencoder depends on the selection of kernel function and its parameter.\",\"PeriodicalId\":277939,\"journal\":{\"name\":\"2018 9th International Conference on Awareness Science and Technology (iCAST)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 9th International Conference on Awareness Science and Technology (iCAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAWST.2018.8517169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 9th International Conference on Awareness Science and Technology (iCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAWST.2018.8517169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

将基于核方法的自编码器应用于特征提取中,并在一个公开的手写体数据库中对其性能进行了评价。基于神经网络的自编码器是一种无监督算法和模型,它试图学习一个近似函数,从而从数据中提取特征。基于核方法的自编码器与基于神经网络的自编码器功能相同,但采用核方法实现线性和非线性数据转换。我们使用手写数据集对基于核的自编码器进行评估,并通过均方误差估计、结构相似指数和峰值信噪比来衡量图像质量。我们还研究了核函数的参数,以观察自编码器性能的变化。我们发现基于核方法的自编码器的有效性取决于核函数及其参数的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Study on Feature Extraction of Handwriting Data Using Kernel Method-Based Autoencoder
We use kernel method-based autoencoder in feature extraction application and evaluate its performance with a public handwriting database. Neural network-based autoencoder is an unsupervised algorithm and model that tries to learn an approximation function so as to extract features from data. Kernel method-based autoencoder has the same function compared with neural network-based autoencoder, but uses kernel methods to implement linear and non-linear data transformation. We use a handwriting dataset to evaluate kernel-based autoencoder, and examine the result by mean square error estimator, structural similarity index and peak signal-to-noise ratio for measuring image quality. We also investigate parameters of kernel functions to observe changes in the performance of the autoencoder. We found that effectiveness of kernel method-based autoencoder depends on the selection of kernel function and its parameter.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Assistance for Drug Dispensing Using LED Notification and IR Sensor-based Monitoring Methods Exploring a Topical Representation of Documents for Recommendation Systems Why Tourists Don’t Visit Again? Pre-accident Situation Analysis Based on Locally of Motion Estimation of Influence of Each Variable on User’s Evaluation in Interactive Evolutionary Computation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1