在Reddit评论中检测讽刺:一个比较分析

Babita Sonare, J. Dewan, Sudeep D. Thepade, Vedang Dadape, Tejas Gadge, Aditya Gavali
{"title":"在Reddit评论中检测讽刺:一个比较分析","authors":"Babita Sonare, J. Dewan, Sudeep D. Thepade, Vedang Dadape, Tejas Gadge, Aditya Gavali","doi":"10.1109/INCET57972.2023.10170613","DOIUrl":null,"url":null,"abstract":"Sarcasm is the use of sarcastic words to mock or mockingly show disdain for something. Several people frequently use it on social media sites like Reddit and Twitter. This study investigates the effectiveness of deep learning and machine learning algorithms in detecting sarcasm using SARC dataset consisting of 1.3 million Reddit comments with almost equal amounts of sarcastic and neutral comments. We compare several well-known machine learning classification methods, including Logistic Regression, Naïve Bayes, Decision Tree Classifier, and Convolutional Neural Networks (CNN). Our results, with an accuracy of 73.2%, demonstrate that the model designed using a fusion of CNN and Long Short-Term Memory Networks (LSTM) techniques performed better than alternative classification algorithms. Our findings show how machine learning techniques will be used in the future to identify sarcasm on social networking websites.","PeriodicalId":403008,"journal":{"name":"2023 4th International Conference for Emerging Technology (INCET)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detecting Sarcasm in Reddit Comments: A Comparative Analysis\",\"authors\":\"Babita Sonare, J. Dewan, Sudeep D. Thepade, Vedang Dadape, Tejas Gadge, Aditya Gavali\",\"doi\":\"10.1109/INCET57972.2023.10170613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sarcasm is the use of sarcastic words to mock or mockingly show disdain for something. Several people frequently use it on social media sites like Reddit and Twitter. This study investigates the effectiveness of deep learning and machine learning algorithms in detecting sarcasm using SARC dataset consisting of 1.3 million Reddit comments with almost equal amounts of sarcastic and neutral comments. We compare several well-known machine learning classification methods, including Logistic Regression, Naïve Bayes, Decision Tree Classifier, and Convolutional Neural Networks (CNN). Our results, with an accuracy of 73.2%, demonstrate that the model designed using a fusion of CNN and Long Short-Term Memory Networks (LSTM) techniques performed better than alternative classification algorithms. Our findings show how machine learning techniques will be used in the future to identify sarcasm on social networking websites.\",\"PeriodicalId\":403008,\"journal\":{\"name\":\"2023 4th International Conference for Emerging Technology (INCET)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 4th International Conference for Emerging Technology (INCET)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INCET57972.2023.10170613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 4th International Conference for Emerging Technology (INCET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INCET57972.2023.10170613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

讽刺是使用讽刺的词语来嘲笑或嘲弄地表示对某事的蔑视。一些人经常在Reddit和Twitter等社交媒体网站上使用它。本研究使用SARC数据集调查了深度学习和机器学习算法在检测讽刺方面的有效性,该数据集由130万条Reddit评论组成,其中讽刺评论和中立评论的数量几乎相等。我们比较了几种著名的机器学习分类方法,包括逻辑回归、Naïve贝叶斯、决策树分类器和卷积神经网络(CNN)。我们的结果表明,使用CNN和长短期记忆网络(LSTM)技术融合设计的模型比其他分类算法表现得更好,准确率为73.2%。我们的研究结果表明,机器学习技术将在未来被用于识别社交网站上的讽刺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detecting Sarcasm in Reddit Comments: A Comparative Analysis
Sarcasm is the use of sarcastic words to mock or mockingly show disdain for something. Several people frequently use it on social media sites like Reddit and Twitter. This study investigates the effectiveness of deep learning and machine learning algorithms in detecting sarcasm using SARC dataset consisting of 1.3 million Reddit comments with almost equal amounts of sarcastic and neutral comments. We compare several well-known machine learning classification methods, including Logistic Regression, Naïve Bayes, Decision Tree Classifier, and Convolutional Neural Networks (CNN). Our results, with an accuracy of 73.2%, demonstrate that the model designed using a fusion of CNN and Long Short-Term Memory Networks (LSTM) techniques performed better than alternative classification algorithms. Our findings show how machine learning techniques will be used in the future to identify sarcasm on social networking websites.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Learning-Based Solution for Differently-Abled Persons in The Society CARP-YOLO: A Detection Framework for Recognising and Counting Fish Species in a Cluttered Environment Implementation of Covid patient Health Monitoring System using IoT ESP Tuning to Reduce Auxiliary Power Consumption and Preserve Environment Real-time Recognition of Indian Sign Language using OpenCV and Deep Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1