基于Gabor滤波的抗噪目标识别

Joni-Kristian Kämäräinen, V. Kyrki, H. Kälviäinen
{"title":"基于Gabor滤波的抗噪目标识别","authors":"Joni-Kristian Kämäräinen, V. Kyrki, H. Kälviäinen","doi":"10.1109/ICDSP.2002.1028344","DOIUrl":null,"url":null,"abstract":"The choice of features for invariant object recognition is one of the most essential problems in computer vision. The authors have previously proposed Gabor (1946) filtering based feature extraction methods which have been successfully applied in invariant object recognition. In this study, the Gabor filtering based feature extraction is further analysed in terms of distortion tolerance which is an essential property for many applications. Experiments indicate that an accurate recognition can be achieved in the presence of significant amounts of distortions.","PeriodicalId":351073,"journal":{"name":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Noise tolerant object recognition using Gabor filtering\",\"authors\":\"Joni-Kristian Kämäräinen, V. Kyrki, H. Kälviäinen\",\"doi\":\"10.1109/ICDSP.2002.1028344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The choice of features for invariant object recognition is one of the most essential problems in computer vision. The authors have previously proposed Gabor (1946) filtering based feature extraction methods which have been successfully applied in invariant object recognition. In this study, the Gabor filtering based feature extraction is further analysed in terms of distortion tolerance which is an essential property for many applications. Experiments indicate that an accurate recognition can be achieved in the presence of significant amounts of distortions.\",\"PeriodicalId\":351073,\"journal\":{\"name\":\"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2002.1028344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2002 14th International Conference on Digital Signal Processing Proceedings. DSP 2002 (Cat. No.02TH8628)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2002.1028344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

不变目标识别的特征选择是计算机视觉中最重要的问题之一。作者先前提出了Gabor(1946)滤波的特征提取方法,并成功地应用于不变目标识别。在这项研究中,进一步分析了基于Gabor滤波的特征提取,畸变容限是许多应用的基本特性。实验表明,在存在大量失真的情况下,可以实现准确的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Noise tolerant object recognition using Gabor filtering
The choice of features for invariant object recognition is one of the most essential problems in computer vision. The authors have previously proposed Gabor (1946) filtering based feature extraction methods which have been successfully applied in invariant object recognition. In this study, the Gabor filtering based feature extraction is further analysed in terms of distortion tolerance which is an essential property for many applications. Experiments indicate that an accurate recognition can be achieved in the presence of significant amounts of distortions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
H/sub /spl infin// bounded optimal updating - down-dating algorithm A systematic approach to seizure prediction using genetic and classifier based feature selection A prognostic-classification system based on a probabilistic NN for predicting urine bladder cancer recurrence Implementation of real-time AMDF pitch-detection for voice gender normalisation Fourier filtering of continuous global surfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1