{"title":"多种程序分析技术使精确检查SEI CERT C编码标准","authors":"Thu-Trang Nguyen, Toshiaki Aoki, Takashi Tomita, Iori Yamada","doi":"10.1109/APSEC48747.2019.00019","DOIUrl":null,"url":null,"abstract":"Static analysis tools have demonstrated their ability to find non-compliant code of coding standards. However, for industrial-sized systems, static analysis tools frequently report a large number of warnings, which contain both true positives and false positives. In this research, to enable precise check for SEI CERT C Coding Standard, we combine static analysis with three different techniques. Firstly, a static analysis tool is used to detect non-compliant code, which are positions that may violate a SEI CERT C rule or recommendation. Each detected position is called a warning. Secondly, deductive verification, model checking, and pattern matching are used to verify whether each warning is a true positive or a false positive. Our experiments with two automotive applications show that this approach can help to improve the accuracy to check for SEI CERT C Coding Standard. We verify nearly 60% warnings of Rosecheckers, a static analysis tool. In these verified warnings, 97% of them are automatically detected to be true positives or false positives by our approach.","PeriodicalId":325642,"journal":{"name":"2019 26th Asia-Pacific Software Engineering Conference (APSEC)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Multiple Program Analysis Techniques Enable Precise Check for SEI CERT C Coding Standard\",\"authors\":\"Thu-Trang Nguyen, Toshiaki Aoki, Takashi Tomita, Iori Yamada\",\"doi\":\"10.1109/APSEC48747.2019.00019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Static analysis tools have demonstrated their ability to find non-compliant code of coding standards. However, for industrial-sized systems, static analysis tools frequently report a large number of warnings, which contain both true positives and false positives. In this research, to enable precise check for SEI CERT C Coding Standard, we combine static analysis with three different techniques. Firstly, a static analysis tool is used to detect non-compliant code, which are positions that may violate a SEI CERT C rule or recommendation. Each detected position is called a warning. Secondly, deductive verification, model checking, and pattern matching are used to verify whether each warning is a true positive or a false positive. Our experiments with two automotive applications show that this approach can help to improve the accuracy to check for SEI CERT C Coding Standard. We verify nearly 60% warnings of Rosecheckers, a static analysis tool. In these verified warnings, 97% of them are automatically detected to be true positives or false positives by our approach.\",\"PeriodicalId\":325642,\"journal\":{\"name\":\"2019 26th Asia-Pacific Software Engineering Conference (APSEC)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 26th Asia-Pacific Software Engineering Conference (APSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSEC48747.2019.00019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 26th Asia-Pacific Software Engineering Conference (APSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSEC48747.2019.00019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multiple Program Analysis Techniques Enable Precise Check for SEI CERT C Coding Standard
Static analysis tools have demonstrated their ability to find non-compliant code of coding standards. However, for industrial-sized systems, static analysis tools frequently report a large number of warnings, which contain both true positives and false positives. In this research, to enable precise check for SEI CERT C Coding Standard, we combine static analysis with three different techniques. Firstly, a static analysis tool is used to detect non-compliant code, which are positions that may violate a SEI CERT C rule or recommendation. Each detected position is called a warning. Secondly, deductive verification, model checking, and pattern matching are used to verify whether each warning is a true positive or a false positive. Our experiments with two automotive applications show that this approach can help to improve the accuracy to check for SEI CERT C Coding Standard. We verify nearly 60% warnings of Rosecheckers, a static analysis tool. In these verified warnings, 97% of them are automatically detected to be true positives or false positives by our approach.