开发一种新型混合pH传感器,可部署在自主分析平台上

V. Rérolle, D. Angelescu, A. Hausot, P. Ea, N. Lefèvre, C. Provost, M. Labaste
{"title":"开发一种新型混合pH传感器,可部署在自主分析平台上","authors":"V. Rérolle, D. Angelescu, A. Hausot, P. Ea, N. Lefèvre, C. Provost, M. Labaste","doi":"10.1109/OCEANSE.2019.8867572","DOIUrl":null,"url":null,"abstract":"Ocean acidification is a direct consequence of the atmospheric CO2 increase and represents a threat for marine ecosystems, particularly in the Arctic. High-quality seawater pH measurements with good spatial and temporal coverage are required to apprehend the ocean acidification phenomena. We are working to develop a high-accuracy, high-resolution pH sensor that has the potential to allow global ocean acidification mapping through deployment on fleets of ARGO floats and other autonomous platforms already in existence. The instrument implements a novel hybrid approach, utilizing the two different and complementary measurement techniques (potentiometric and colorimetric) to generate temporally dense and highly accurate pH data. Here we present the concept and initial results obtained from a hybrid pH sensor. Results show that the potentiometric part of the sensor is capable to operate in real ocean pressure and temperature conditions, including near-freezing temperatures typical of Arctic environmental conditions. The colorimetric part provides a stable reference to perform periodic recalibrations and remove drift.","PeriodicalId":375793,"journal":{"name":"OCEANS 2019 - Marseille","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Development of a novel hybrid pH sensor for deployment on autonomous profiling platforms\",\"authors\":\"V. Rérolle, D. Angelescu, A. Hausot, P. Ea, N. Lefèvre, C. Provost, M. Labaste\",\"doi\":\"10.1109/OCEANSE.2019.8867572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ocean acidification is a direct consequence of the atmospheric CO2 increase and represents a threat for marine ecosystems, particularly in the Arctic. High-quality seawater pH measurements with good spatial and temporal coverage are required to apprehend the ocean acidification phenomena. We are working to develop a high-accuracy, high-resolution pH sensor that has the potential to allow global ocean acidification mapping through deployment on fleets of ARGO floats and other autonomous platforms already in existence. The instrument implements a novel hybrid approach, utilizing the two different and complementary measurement techniques (potentiometric and colorimetric) to generate temporally dense and highly accurate pH data. Here we present the concept and initial results obtained from a hybrid pH sensor. Results show that the potentiometric part of the sensor is capable to operate in real ocean pressure and temperature conditions, including near-freezing temperatures typical of Arctic environmental conditions. The colorimetric part provides a stable reference to perform periodic recalibrations and remove drift.\",\"PeriodicalId\":375793,\"journal\":{\"name\":\"OCEANS 2019 - Marseille\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OCEANS 2019 - Marseille\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANSE.2019.8867572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2019 - Marseille","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSE.2019.8867572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

海洋酸化是大气中二氧化碳增加的直接后果,对海洋生态系统构成威胁,特别是在北极。要了解海洋酸化现象,需要具有良好时空覆盖的高质量海水pH测量。我们正在努力开发一种高精度、高分辨率的pH传感器,通过部署在ARGO浮标和其他现有的自主平台上,该传感器有可能实现全球海洋酸化测绘。该仪器实现了一种新的混合方法,利用两种不同的互补测量技术(电位法和比色法)来生成时间密集和高度精确的pH值数据。在这里,我们提出了概念和从混合pH传感器获得的初步结果。结果表明,传感器的电位测量部分能够在真实的海洋压力和温度条件下工作,包括北极环境条件下典型的接近冰点的温度。比色部分为定期重新校准和消除漂移提供了稳定的参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of a novel hybrid pH sensor for deployment on autonomous profiling platforms
Ocean acidification is a direct consequence of the atmospheric CO2 increase and represents a threat for marine ecosystems, particularly in the Arctic. High-quality seawater pH measurements with good spatial and temporal coverage are required to apprehend the ocean acidification phenomena. We are working to develop a high-accuracy, high-resolution pH sensor that has the potential to allow global ocean acidification mapping through deployment on fleets of ARGO floats and other autonomous platforms already in existence. The instrument implements a novel hybrid approach, utilizing the two different and complementary measurement techniques (potentiometric and colorimetric) to generate temporally dense and highly accurate pH data. Here we present the concept and initial results obtained from a hybrid pH sensor. Results show that the potentiometric part of the sensor is capable to operate in real ocean pressure and temperature conditions, including near-freezing temperatures typical of Arctic environmental conditions. The colorimetric part provides a stable reference to perform periodic recalibrations and remove drift.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Data-driven Vessel Motion Model for Offshore Access Forecasting Decentralized System Intelligence in Data Driven Networks for Shipping Industrial Applications: Digital Models to Blockchain Technologies Robust 3D Shape Classification Method using Simulated Multi View Sonar Images and Convolutional Nueral Network Weighted Grid Partitioning for Panel-Based Bathymetric SLAM Fishing Spot Detection Using Sea Water Temperature Pattern by Nonlinear Clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1