具有成对约束的图像正则化非负局部坐标分解

Yangcheng He, Hongtao Lu, Bao-Liang Lu
{"title":"具有成对约束的图像正则化非负局部坐标分解","authors":"Yangcheng He, Hongtao Lu, Bao-Liang Lu","doi":"10.1109/ICME.2015.7177386","DOIUrl":null,"url":null,"abstract":"Chen et al. proposed a non-negative local coordinate factorization algorithm for feature extraction (NLCF) [1], which incorporated the local coordinate constraint into non-negative matrix factorization (NMF). However, NLCF is actually a unsupervised method without making use of prior information of problems in hand. In this paper, we propose a novel graph regularized non-negative local coordinate factorization with pairwise constraints algorithm (PCGNLCF) for image representation. PCGNLCF incorporates pairwise constraints and graph Laplacian into NLCF. More specifically, we expect that data points having pairwise must-link constraints will have the similar coordinates as much as possible, while data points with pairwise cannot-link constraints will have distinct coordinates as much as possible. Experimental results show the effectiveness of our proposed method in comparison to the state-of-the-art algorithms on several real-world applications.","PeriodicalId":146271,"journal":{"name":"2015 IEEE International Conference on Multimedia and Expo (ICME)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Graph regularized non-negative local coordinate factorization with pairwise constraints for image representation\",\"authors\":\"Yangcheng He, Hongtao Lu, Bao-Liang Lu\",\"doi\":\"10.1109/ICME.2015.7177386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Chen et al. proposed a non-negative local coordinate factorization algorithm for feature extraction (NLCF) [1], which incorporated the local coordinate constraint into non-negative matrix factorization (NMF). However, NLCF is actually a unsupervised method without making use of prior information of problems in hand. In this paper, we propose a novel graph regularized non-negative local coordinate factorization with pairwise constraints algorithm (PCGNLCF) for image representation. PCGNLCF incorporates pairwise constraints and graph Laplacian into NLCF. More specifically, we expect that data points having pairwise must-link constraints will have the similar coordinates as much as possible, while data points with pairwise cannot-link constraints will have distinct coordinates as much as possible. Experimental results show the effectiveness of our proposed method in comparison to the state-of-the-art algorithms on several real-world applications.\",\"PeriodicalId\":146271,\"journal\":{\"name\":\"2015 IEEE International Conference on Multimedia and Expo (ICME)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE International Conference on Multimedia and Expo (ICME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2015.7177386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2015.7177386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Chen等人提出了一种非负局部坐标分解算法用于特征提取(NLCF)[1],该算法将局部坐标约束融入到非负矩阵分解(NMF)中。然而,NLCF实际上是一种不利用手头问题先验信息的无监督方法。本文提出了一种新的带有成对约束的图正则化非负局部坐标分解算法(PCGNLCF)。PCGNLCF在NLCF中引入了成对约束和图拉普拉斯。更具体地说,我们期望具有成对必须链接约束的数据点具有尽可能相似的坐标,而具有成对不能链接约束的数据点具有尽可能不同的坐标。实验结果表明,我们提出的方法在几个实际应用中与最先进的算法相比是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graph regularized non-negative local coordinate factorization with pairwise constraints for image representation
Chen et al. proposed a non-negative local coordinate factorization algorithm for feature extraction (NLCF) [1], which incorporated the local coordinate constraint into non-negative matrix factorization (NMF). However, NLCF is actually a unsupervised method without making use of prior information of problems in hand. In this paper, we propose a novel graph regularized non-negative local coordinate factorization with pairwise constraints algorithm (PCGNLCF) for image representation. PCGNLCF incorporates pairwise constraints and graph Laplacian into NLCF. More specifically, we expect that data points having pairwise must-link constraints will have the similar coordinates as much as possible, while data points with pairwise cannot-link constraints will have distinct coordinates as much as possible. Experimental results show the effectiveness of our proposed method in comparison to the state-of-the-art algorithms on several real-world applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Affect-expressive hand gestures synthesis and animation VTouch: Vision-enhanced interaction for large touch displays Egocentric hand pose estimation and distance recovery in a single RGB image A hybrid approach for retrieving diverse social images of landmarks Spatial perception reproduction of sound events based on sound property coincidences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1