John Vincent Adan, Joshua Roberto Gruta, Jesus M. Martinez
{"title":"斯特林发动机热泵热电冷却器对锂离子电池模块冷却效果的研究","authors":"John Vincent Adan, Joshua Roberto Gruta, Jesus M. Martinez","doi":"10.1109/ICSGCE55997.2022.9953699","DOIUrl":null,"url":null,"abstract":"Lithium-ion batteries overheat during their actual operation, creating difficulties for their implementation in EVs and HEVs. In this study, a thermoelectric cooler paired with a Stirling engine (TEC+SE) was designed and used as a cooling mechanism for the battery cooling system. Then, the researchers compared the maximum temperature of the battery module at various discharge rates and the power consumption when TEC+SE was used to that of the standard thermoelectric cooler paired with force convection (TEC+FC). The researchers found that TEC+FC still provides better cooling since the battery module had a lower maximum temperature for every discharge rate than TEC+SE. Despite this, power consumption measurement reveals that TEC+SE consumes significantly less power than TEC+FC.","PeriodicalId":326314,"journal":{"name":"2022 10th International Conference on Smart Grid and Clean Energy Technologies (ICSGCE)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the Effectiveness of Thermoelectric Cooler with Stirling Engine Heat Pump for the Cooling of Lithium–Ion Battery Module\",\"authors\":\"John Vincent Adan, Joshua Roberto Gruta, Jesus M. Martinez\",\"doi\":\"10.1109/ICSGCE55997.2022.9953699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lithium-ion batteries overheat during their actual operation, creating difficulties for their implementation in EVs and HEVs. In this study, a thermoelectric cooler paired with a Stirling engine (TEC+SE) was designed and used as a cooling mechanism for the battery cooling system. Then, the researchers compared the maximum temperature of the battery module at various discharge rates and the power consumption when TEC+SE was used to that of the standard thermoelectric cooler paired with force convection (TEC+FC). The researchers found that TEC+FC still provides better cooling since the battery module had a lower maximum temperature for every discharge rate than TEC+SE. Despite this, power consumption measurement reveals that TEC+SE consumes significantly less power than TEC+FC.\",\"PeriodicalId\":326314,\"journal\":{\"name\":\"2022 10th International Conference on Smart Grid and Clean Energy Technologies (ICSGCE)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 10th International Conference on Smart Grid and Clean Energy Technologies (ICSGCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSGCE55997.2022.9953699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 10th International Conference on Smart Grid and Clean Energy Technologies (ICSGCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSGCE55997.2022.9953699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation of the Effectiveness of Thermoelectric Cooler with Stirling Engine Heat Pump for the Cooling of Lithium–Ion Battery Module
Lithium-ion batteries overheat during their actual operation, creating difficulties for their implementation in EVs and HEVs. In this study, a thermoelectric cooler paired with a Stirling engine (TEC+SE) was designed and used as a cooling mechanism for the battery cooling system. Then, the researchers compared the maximum temperature of the battery module at various discharge rates and the power consumption when TEC+SE was used to that of the standard thermoelectric cooler paired with force convection (TEC+FC). The researchers found that TEC+FC still provides better cooling since the battery module had a lower maximum temperature for every discharge rate than TEC+SE. Despite this, power consumption measurement reveals that TEC+SE consumes significantly less power than TEC+FC.