几何约束全变分光流图像配准

M. Shoeiby, M. Armin, A. Robles-Kelly
{"title":"几何约束全变分光流图像配准","authors":"M. Shoeiby, M. Armin, A. Robles-Kelly","doi":"10.1109/DICTA.2018.8615805","DOIUrl":null,"url":null,"abstract":"In this paper, we present a method for registration of image pairs. Our method relates both images to one another for registration purposes making use of optical flow. We formulate the problem in a variational setting making use of an L1-norm fidelity term, a total variation (TV) criterion, and a geometric constraint. This treatment leads to a cost function, in which, both the total variation and the homographic constraints are enforced via regularisation. Further, to compute the flow we employ a multiscale pyramid, whereby the total variation is minimized at each layer and the geometric constraint is enforced between layers. In practice, this is carried out by using a Rudin-Osher-Fatemi (ROF) denoising model within each layer and a gated function for the homography computation between layers. We also illustrate the utility of our method for image registration and flow computation and compare our approach to a mainstream non-geometrically constrained variational alternative elsewhere in the literature.","PeriodicalId":130057,"journal":{"name":"2018 Digital Image Computing: Techniques and Applications (DICTA)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image Registration via Geometrically Constrained Total Variation Optical Flow\",\"authors\":\"M. Shoeiby, M. Armin, A. Robles-Kelly\",\"doi\":\"10.1109/DICTA.2018.8615805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a method for registration of image pairs. Our method relates both images to one another for registration purposes making use of optical flow. We formulate the problem in a variational setting making use of an L1-norm fidelity term, a total variation (TV) criterion, and a geometric constraint. This treatment leads to a cost function, in which, both the total variation and the homographic constraints are enforced via regularisation. Further, to compute the flow we employ a multiscale pyramid, whereby the total variation is minimized at each layer and the geometric constraint is enforced between layers. In practice, this is carried out by using a Rudin-Osher-Fatemi (ROF) denoising model within each layer and a gated function for the homography computation between layers. We also illustrate the utility of our method for image registration and flow computation and compare our approach to a mainstream non-geometrically constrained variational alternative elsewhere in the literature.\",\"PeriodicalId\":130057,\"journal\":{\"name\":\"2018 Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA.2018.8615805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2018.8615805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种图像对的配准方法。我们的方法将两个图像相互关联,以便利用光流进行配准。我们利用1范数保真度项、总变差(TV)准则和几何约束,在变分设置中表述问题。这种处理导致成本函数,其中,总变化和同形约束都是通过正则化来强制执行的。此外,为了计算流量,我们采用了一个多尺度金字塔,其中每层的总变化是最小的,层之间的几何约束是强制的。在实践中,这是通过在每层内使用Rudin-Osher-Fatemi (ROF)去噪模型和用于层间单应性计算的门控函数来实现的。我们还说明了我们的方法在图像配准和流计算方面的实用性,并将我们的方法与文献中其他地方的主流非几何约束变分替代方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image Registration via Geometrically Constrained Total Variation Optical Flow
In this paper, we present a method for registration of image pairs. Our method relates both images to one another for registration purposes making use of optical flow. We formulate the problem in a variational setting making use of an L1-norm fidelity term, a total variation (TV) criterion, and a geometric constraint. This treatment leads to a cost function, in which, both the total variation and the homographic constraints are enforced via regularisation. Further, to compute the flow we employ a multiscale pyramid, whereby the total variation is minimized at each layer and the geometric constraint is enforced between layers. In practice, this is carried out by using a Rudin-Osher-Fatemi (ROF) denoising model within each layer and a gated function for the homography computation between layers. We also illustrate the utility of our method for image registration and flow computation and compare our approach to a mainstream non-geometrically constrained variational alternative elsewhere in the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Satellite Multi-Vehicle Tracking under Inconsistent Detection Conditions by Bilevel K-Shortest Paths Optimization Classification of White Blood Cells using Bispectral Invariant Features of Nuclei Shape Impulse-Equivalent Sequences and Arrays Impact of MRI Protocols on Alzheimer's Disease Detection Strided U-Net Model: Retinal Vessels Segmentation using Dice Loss
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1