基于同步压缩变换和机器学习的癫痫脑电分类

Ozlem Karabiber Cura, A. Akan
{"title":"基于同步压缩变换和机器学习的癫痫脑电分类","authors":"Ozlem Karabiber Cura, A. Akan","doi":"10.1109/TIPTEKNO50054.2020.9299317","DOIUrl":null,"url":null,"abstract":"Epilepsy is one of the neurological diseases that occur incidences worldwide. The electroencephalography (EEG) recording method is the most frequently used clinical practice in the diagnosis and monitoring of epilepsy. Many computer-aided analysis methods have been developed in the literature to facilitate the analysis of long-term EEG signals. In the proposed study, the patient-based seizure detection approach is proposed using a high-resolution time-frequency (TF) representation named Synchrosqueezed Transform (SST) method. The SST of two different data sets called the IKCU data set and CHB-MIT data set are obtained, and Higher-order joint TF(HOJ-TF) based and Gray-level co-occurrence matrix (GLCM) based features are calculated using these SSTs. Using some machine learning methods such as Decision Tree (DT), k-Nearest Neighbor (kNN), and Logistic Regression (LR), classification processes are conducted. High patient-based seizure detection success is achieved for both the IKCU data set (94.25%) and the CHB-MIT data set (95.15%).","PeriodicalId":426945,"journal":{"name":"2020 Medical Technologies Congress (TIPTEKNO)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epileptic EEG Classification Using Synchrosqueezing Transform and Machine Learning\",\"authors\":\"Ozlem Karabiber Cura, A. Akan\",\"doi\":\"10.1109/TIPTEKNO50054.2020.9299317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epilepsy is one of the neurological diseases that occur incidences worldwide. The electroencephalography (EEG) recording method is the most frequently used clinical practice in the diagnosis and monitoring of epilepsy. Many computer-aided analysis methods have been developed in the literature to facilitate the analysis of long-term EEG signals. In the proposed study, the patient-based seizure detection approach is proposed using a high-resolution time-frequency (TF) representation named Synchrosqueezed Transform (SST) method. The SST of two different data sets called the IKCU data set and CHB-MIT data set are obtained, and Higher-order joint TF(HOJ-TF) based and Gray-level co-occurrence matrix (GLCM) based features are calculated using these SSTs. Using some machine learning methods such as Decision Tree (DT), k-Nearest Neighbor (kNN), and Logistic Regression (LR), classification processes are conducted. High patient-based seizure detection success is achieved for both the IKCU data set (94.25%) and the CHB-MIT data set (95.15%).\",\"PeriodicalId\":426945,\"journal\":{\"name\":\"2020 Medical Technologies Congress (TIPTEKNO)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Medical Technologies Congress (TIPTEKNO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TIPTEKNO50054.2020.9299317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Medical Technologies Congress (TIPTEKNO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TIPTEKNO50054.2020.9299317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

癫痫是世界范围内常见的神经系统疾病之一。脑电图(EEG)记录法是临床上诊断和监测癫痫最常用的方法。文献中已经发展了许多计算机辅助分析方法,以方便对长期脑电图信号的分析。在本研究中,提出了一种基于患者的癫痫发作检测方法,该方法使用高分辨率时频(TF)表示,称为同步压缩变换(SST)方法。获得了IKCU数据集和CHB-MIT数据集的SST,并利用这些SST计算了基于HOJ-TF (high -order joint TF)和基于灰度共生矩阵(Gray-level co-occurrence matrix, GLCM)的特征。使用一些机器学习方法,如决策树(DT), k近邻(kNN)和逻辑回归(LR),进行分类过程。IKCU数据集(94.25%)和CHB-MIT数据集(95.15%)均实现了较高的基于患者的癫痫检测成功率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Epileptic EEG Classification Using Synchrosqueezing Transform and Machine Learning
Epilepsy is one of the neurological diseases that occur incidences worldwide. The electroencephalography (EEG) recording method is the most frequently used clinical practice in the diagnosis and monitoring of epilepsy. Many computer-aided analysis methods have been developed in the literature to facilitate the analysis of long-term EEG signals. In the proposed study, the patient-based seizure detection approach is proposed using a high-resolution time-frequency (TF) representation named Synchrosqueezed Transform (SST) method. The SST of two different data sets called the IKCU data set and CHB-MIT data set are obtained, and Higher-order joint TF(HOJ-TF) based and Gray-level co-occurrence matrix (GLCM) based features are calculated using these SSTs. Using some machine learning methods such as Decision Tree (DT), k-Nearest Neighbor (kNN), and Logistic Regression (LR), classification processes are conducted. High patient-based seizure detection success is achieved for both the IKCU data set (94.25%) and the CHB-MIT data set (95.15%).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiclass Classification of Brain Cancer with Machine Learning Algorithms Digital Filter Design Based on ARDUINO and Its Applications Use of Velocity Vectors for Cell Classification Under Acoustic Drifting Forces Development of a Full Face Mask during the COVID-19 Epidemic Spread Period TIPTEKNO 2020 Index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1