Ali Mehanaoui, T. Laroussi, M. Attalah, Aladdine Aouane
{"title":"在Pareto背景和多目标情况下的EVI-ASD-CFAR处理器","authors":"Ali Mehanaoui, T. Laroussi, M. Attalah, Aladdine Aouane","doi":"10.1109/SETIT.2016.7939887","DOIUrl":null,"url":null,"abstract":"This paper investigates the problem of automatic target detection in a Pareto background under multiple target situations. The number of interfering targets is assumed to be unknown. We derive the Enhanced Variability Index Automatic Selection and Detection Constant False Alarm Rate (EVI-ASD-CFAR) Processor. This latter selects and matches dynamically the suitable detector among the Geometric Mean (GM)-CFAR, Greatest Of(GO)-CFAR and Trimmed Mean (TM)-CFAR. The unknown background level is then estimated and set to the corresponding threshold. The detection performances of the proposed processor are assessed via Monte Carlo simulations.","PeriodicalId":426951,"journal":{"name":"2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An EVI-ASD-CFAR Processor in a Pareto background and multiple target situations\",\"authors\":\"Ali Mehanaoui, T. Laroussi, M. Attalah, Aladdine Aouane\",\"doi\":\"10.1109/SETIT.2016.7939887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the problem of automatic target detection in a Pareto background under multiple target situations. The number of interfering targets is assumed to be unknown. We derive the Enhanced Variability Index Automatic Selection and Detection Constant False Alarm Rate (EVI-ASD-CFAR) Processor. This latter selects and matches dynamically the suitable detector among the Geometric Mean (GM)-CFAR, Greatest Of(GO)-CFAR and Trimmed Mean (TM)-CFAR. The unknown background level is then estimated and set to the corresponding threshold. The detection performances of the proposed processor are assessed via Monte Carlo simulations.\",\"PeriodicalId\":426951,\"journal\":{\"name\":\"2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SETIT.2016.7939887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SETIT.2016.7939887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An EVI-ASD-CFAR Processor in a Pareto background and multiple target situations
This paper investigates the problem of automatic target detection in a Pareto background under multiple target situations. The number of interfering targets is assumed to be unknown. We derive the Enhanced Variability Index Automatic Selection and Detection Constant False Alarm Rate (EVI-ASD-CFAR) Processor. This latter selects and matches dynamically the suitable detector among the Geometric Mean (GM)-CFAR, Greatest Of(GO)-CFAR and Trimmed Mean (TM)-CFAR. The unknown background level is then estimated and set to the corresponding threshold. The detection performances of the proposed processor are assessed via Monte Carlo simulations.