在Pareto背景和多目标情况下的EVI-ASD-CFAR处理器

Ali Mehanaoui, T. Laroussi, M. Attalah, Aladdine Aouane
{"title":"在Pareto背景和多目标情况下的EVI-ASD-CFAR处理器","authors":"Ali Mehanaoui, T. Laroussi, M. Attalah, Aladdine Aouane","doi":"10.1109/SETIT.2016.7939887","DOIUrl":null,"url":null,"abstract":"This paper investigates the problem of automatic target detection in a Pareto background under multiple target situations. The number of interfering targets is assumed to be unknown. We derive the Enhanced Variability Index Automatic Selection and Detection Constant False Alarm Rate (EVI-ASD-CFAR) Processor. This latter selects and matches dynamically the suitable detector among the Geometric Mean (GM)-CFAR, Greatest Of(GO)-CFAR and Trimmed Mean (TM)-CFAR. The unknown background level is then estimated and set to the corresponding threshold. The detection performances of the proposed processor are assessed via Monte Carlo simulations.","PeriodicalId":426951,"journal":{"name":"2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)","volume":"126 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"An EVI-ASD-CFAR Processor in a Pareto background and multiple target situations\",\"authors\":\"Ali Mehanaoui, T. Laroussi, M. Attalah, Aladdine Aouane\",\"doi\":\"10.1109/SETIT.2016.7939887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates the problem of automatic target detection in a Pareto background under multiple target situations. The number of interfering targets is assumed to be unknown. We derive the Enhanced Variability Index Automatic Selection and Detection Constant False Alarm Rate (EVI-ASD-CFAR) Processor. This latter selects and matches dynamically the suitable detector among the Geometric Mean (GM)-CFAR, Greatest Of(GO)-CFAR and Trimmed Mean (TM)-CFAR. The unknown background level is then estimated and set to the corresponding threshold. The detection performances of the proposed processor are assessed via Monte Carlo simulations.\",\"PeriodicalId\":426951,\"journal\":{\"name\":\"2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)\",\"volume\":\"126 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SETIT.2016.7939887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 7th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SETIT.2016.7939887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

研究了多目标情况下Pareto背景下的目标自动检测问题。假设干扰目标的数量是未知的。我们提出了增强型变异性指数自动选择和检测恒定虚警率(EVI-ASD-CFAR)处理器。后者在几何均值(GM)-CFAR、最大Of(GO)-CFAR和修剪均值(TM)-CFAR中动态选择和匹配合适的检测器。然后估计未知的背景水平并设置相应的阈值。通过蒙特卡洛仿真评估了该处理器的检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An EVI-ASD-CFAR Processor in a Pareto background and multiple target situations
This paper investigates the problem of automatic target detection in a Pareto background under multiple target situations. The number of interfering targets is assumed to be unknown. We derive the Enhanced Variability Index Automatic Selection and Detection Constant False Alarm Rate (EVI-ASD-CFAR) Processor. This latter selects and matches dynamically the suitable detector among the Geometric Mean (GM)-CFAR, Greatest Of(GO)-CFAR and Trimmed Mean (TM)-CFAR. The unknown background level is then estimated and set to the corresponding threshold. The detection performances of the proposed processor are assessed via Monte Carlo simulations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design of SIW iris-coupled-cavity band-pass filter circuit using Wave Concept Iterative Process method Heuristic analysis and contingencies classification of case study IEEE 14-bus Corpus management system: Semantic aspects of representation and processing of search queries SEMG based model to simulate action potential of a single muscle fiber Medical Body Area Networks: Mobility and channel modeling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1