基于加权最小二乘的频率估计算法

R. Punchalard
{"title":"基于加权最小二乘的频率估计算法","authors":"R. Punchalard","doi":"10.1109/IEECON.2017.8075865","DOIUrl":null,"url":null,"abstract":"The LMS-based indirect frequency estimation algorithm (IFE) is reformulated using weighted least-square error criterion. Theoretical analyses for steady state bias and mean square error (MSE) are addressed. It has been shown that the proposed algorithm outperforms the conventional LMS-based algorithms in terms of convergence speed at the same value of MSE.","PeriodicalId":196081,"journal":{"name":"2017 International Electrical Engineering Congress (iEECON)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Weighted least square based frequency estimation algorithm\",\"authors\":\"R. Punchalard\",\"doi\":\"10.1109/IEECON.2017.8075865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The LMS-based indirect frequency estimation algorithm (IFE) is reformulated using weighted least-square error criterion. Theoretical analyses for steady state bias and mean square error (MSE) are addressed. It has been shown that the proposed algorithm outperforms the conventional LMS-based algorithms in terms of convergence speed at the same value of MSE.\",\"PeriodicalId\":196081,\"journal\":{\"name\":\"2017 International Electrical Engineering Congress (iEECON)\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Electrical Engineering Congress (iEECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEECON.2017.8075865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Electrical Engineering Congress (iEECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEECON.2017.8075865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

采用加权最小二乘误差准则对基于lms的间接频率估计算法进行了重新表述。对稳态偏差和均方误差(MSE)进行了理论分析。结果表明,在相同的MSE值下,该算法的收敛速度优于传统的基于lms的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Weighted least square based frequency estimation algorithm
The LMS-based indirect frequency estimation algorithm (IFE) is reformulated using weighted least-square error criterion. Theoretical analyses for steady state bias and mean square error (MSE) are addressed. It has been shown that the proposed algorithm outperforms the conventional LMS-based algorithms in terms of convergence speed at the same value of MSE.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive power flow control for reducing peak demand and maximizing renewable energy usage Fuzzy based random pulse width modulation technique for performance improvement of induction motor Condition evaluation of power transformers using dissolved gas analysis and dielectric breakdown voltage test The hybrid photovoltaic energy system for electric vehicle battery charger Analysis and modeling of wind turbine generators considering frequency controls
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1