基于nvm的内存文件系统的一致性机制

Jin-hua Zha, Linpeng Huang, L. Wu, Shengan Zheng, H. Liu
{"title":"基于nvm的内存文件系统的一致性机制","authors":"Jin-hua Zha, Linpeng Huang, L. Wu, Shengan Zheng, H. Liu","doi":"10.1145/2903150.2903160","DOIUrl":null,"url":null,"abstract":"Non-Volatile Memory (NVM) has evolved to achieve non-volatility and byte-addressability with latency comparable to DRAM. This inspires the development of a new generation of file systems, namely NVM-based in-memory file systems, which include NVM on memory bus and allow in-NVM data to be directly accessed like DRAM. Meanwhile, an important issue, the consistency problem, arises as a new challenge. That is, the direct modification to the in-NVM data can be interrupted by arbitrary crashes in the system, which results in part of the modification being durable and others being lost. Traditional consistency mechanisms assume the existence of DRAM buffering and hence cannot be applied to this hybrid memory architecture. While several consistency methods have been proposed for NVM-based in-memory file systems, most of them have side-effects including unfriendliness to DRAM and penalties on concurrency control, which degrade the system performance. In this paper, we propose a novel mechanism to guarantee the consistency of NVM-based in-memory file systems. We abstract the storage area as a layered structure and employ a lazy-validated snapshot strategy to achieve a high consistency level. Since every consistency method comes with a cost, we introduce several algorithms to efficiently deal with block-sharing and reduce the overhead of consistency mechanism. The experimental results show that our mechanism incurs negligible consistency overhead and outperforms a state-of-the-art snapshot file system by reducing the latency of snapshot taking and removal by 95% and 60% respectively.","PeriodicalId":226569,"journal":{"name":"Proceedings of the ACM International Conference on Computing Frontiers","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A consistency mechanism for NVM-Based in-memory file systems\",\"authors\":\"Jin-hua Zha, Linpeng Huang, L. Wu, Shengan Zheng, H. Liu\",\"doi\":\"10.1145/2903150.2903160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-Volatile Memory (NVM) has evolved to achieve non-volatility and byte-addressability with latency comparable to DRAM. This inspires the development of a new generation of file systems, namely NVM-based in-memory file systems, which include NVM on memory bus and allow in-NVM data to be directly accessed like DRAM. Meanwhile, an important issue, the consistency problem, arises as a new challenge. That is, the direct modification to the in-NVM data can be interrupted by arbitrary crashes in the system, which results in part of the modification being durable and others being lost. Traditional consistency mechanisms assume the existence of DRAM buffering and hence cannot be applied to this hybrid memory architecture. While several consistency methods have been proposed for NVM-based in-memory file systems, most of them have side-effects including unfriendliness to DRAM and penalties on concurrency control, which degrade the system performance. In this paper, we propose a novel mechanism to guarantee the consistency of NVM-based in-memory file systems. We abstract the storage area as a layered structure and employ a lazy-validated snapshot strategy to achieve a high consistency level. Since every consistency method comes with a cost, we introduce several algorithms to efficiently deal with block-sharing and reduce the overhead of consistency mechanism. The experimental results show that our mechanism incurs negligible consistency overhead and outperforms a state-of-the-art snapshot file system by reducing the latency of snapshot taking and removal by 95% and 60% respectively.\",\"PeriodicalId\":226569,\"journal\":{\"name\":\"Proceedings of the ACM International Conference on Computing Frontiers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2903150.2903160\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2903150.2903160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

非易失性存储器(NVM)已经发展到实现非易失性和字节寻址性,其延迟可与DRAM相媲美。这激发了新一代文件系统的发展,即基于NVM的内存文件系统,它在内存总线上包含NVM,并允许像DRAM一样直接访问NVM中的数据。与此同时,一个重要的问题——一致性问题也提出了新的挑战。也就是说,对nvm内数据的直接修改可能被系统中的任意崩溃中断,这导致部分修改是持久的,而其他修改则丢失。传统的一致性机制假定存在DRAM缓冲,因此不能应用于这种混合内存体系结构。虽然已经为基于nvm的内存文件系统提出了几种一致性方法,但大多数方法都有副作用,包括对DRAM不友好以及对并发控制的惩罚,这会降低系统性能。在本文中,我们提出了一种新的机制来保证基于nvm的内存文件系统的一致性。我们将存储区域抽象为分层结构,并采用延迟验证的快照策略来实现高一致性。由于每一种一致性方法都有一定的代价,我们引入了几种算法来有效地处理块共享,减少一致性机制的开销。实验结果表明,我们的机制产生的一致性开销可以忽略不计,并且通过将快照获取和删除的延迟分别减少95%和60%,性能优于最先进的快照文件系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A consistency mechanism for NVM-Based in-memory file systems
Non-Volatile Memory (NVM) has evolved to achieve non-volatility and byte-addressability with latency comparable to DRAM. This inspires the development of a new generation of file systems, namely NVM-based in-memory file systems, which include NVM on memory bus and allow in-NVM data to be directly accessed like DRAM. Meanwhile, an important issue, the consistency problem, arises as a new challenge. That is, the direct modification to the in-NVM data can be interrupted by arbitrary crashes in the system, which results in part of the modification being durable and others being lost. Traditional consistency mechanisms assume the existence of DRAM buffering and hence cannot be applied to this hybrid memory architecture. While several consistency methods have been proposed for NVM-based in-memory file systems, most of them have side-effects including unfriendliness to DRAM and penalties on concurrency control, which degrade the system performance. In this paper, we propose a novel mechanism to guarantee the consistency of NVM-based in-memory file systems. We abstract the storage area as a layered structure and employ a lazy-validated snapshot strategy to achieve a high consistency level. Since every consistency method comes with a cost, we introduce several algorithms to efficiently deal with block-sharing and reduce the overhead of consistency mechanism. The experimental results show that our mechanism incurs negligible consistency overhead and outperforms a state-of-the-art snapshot file system by reducing the latency of snapshot taking and removal by 95% and 60% respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Big data analytics and the LHC Using colored petri nets for GPGPU performance modeling Predictive modeling based power estimation for embedded multicore systems Boosting performance of directory-based cache coherence protocols with coherence bypass at subpage granularity and a novel on-chip page table Prototyping real-time tracking systems on mobile devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1