用于调峰调度的电池储能占空比的表征与综合

Kevin Moy, Seong-Beom Lee, S. Onori
{"title":"用于调峰调度的电池储能占空比的表征与综合","authors":"Kevin Moy, Seong-Beom Lee, S. Onori","doi":"10.1115/1.4050192","DOIUrl":null,"url":null,"abstract":"\n Energy storage systems (ESSs), such as lithium-ion batteries, are being used today in renewable grid systems to provide the capacity, power, and quick response required for operation in grid applications, including peak shaving, frequency regulation, back-up power, and voltage support. Each application imposes a different duty cycle on the ESS. This represents the charge/discharge profile associated with energy generation and demand. Different duty cycle characteristics can have different effects on the performance, life, and duration of ESSs. Within lithium-ion batteries, various chemistries exist that own different features in terms of specific energy, power, and cycle life, that ultimately determine their usability and performance. Therefore, the characterization of duty cycles is a key to determine how to properly design lithium-ion battery systems for grid applications. Given the usage-dependent degradation trajectories, this research task is a critical step to study the unique aging behaviors of grid batteries. Significant energy and cost savings can be achieved by the optimal application of lithium-ion batteries for grid-energy storage, enabling greater utilization of renewable grid systems. In this paper, we propose an approach, based on unsupervised learning and frequency domain techniques, to characterize duty cycles for the grid-specific peak shaving applications. Finally, we propose synthetic duty cycles to mimic grid-battery dynamic behaviors for use in laboratory testing.","PeriodicalId":327130,"journal":{"name":"ASME Letters in Dynamic Systems and Control","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Characterization and Synthesis of Duty Cycles for Battery Energy Storage Used in Peak Shaving Dispatch\",\"authors\":\"Kevin Moy, Seong-Beom Lee, S. Onori\",\"doi\":\"10.1115/1.4050192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Energy storage systems (ESSs), such as lithium-ion batteries, are being used today in renewable grid systems to provide the capacity, power, and quick response required for operation in grid applications, including peak shaving, frequency regulation, back-up power, and voltage support. Each application imposes a different duty cycle on the ESS. This represents the charge/discharge profile associated with energy generation and demand. Different duty cycle characteristics can have different effects on the performance, life, and duration of ESSs. Within lithium-ion batteries, various chemistries exist that own different features in terms of specific energy, power, and cycle life, that ultimately determine their usability and performance. Therefore, the characterization of duty cycles is a key to determine how to properly design lithium-ion battery systems for grid applications. Given the usage-dependent degradation trajectories, this research task is a critical step to study the unique aging behaviors of grid batteries. Significant energy and cost savings can be achieved by the optimal application of lithium-ion batteries for grid-energy storage, enabling greater utilization of renewable grid systems. In this paper, we propose an approach, based on unsupervised learning and frequency domain techniques, to characterize duty cycles for the grid-specific peak shaving applications. Finally, we propose synthetic duty cycles to mimic grid-battery dynamic behaviors for use in laboratory testing.\",\"PeriodicalId\":327130,\"journal\":{\"name\":\"ASME Letters in Dynamic Systems and Control\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASME Letters in Dynamic Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4050192\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASME Letters in Dynamic Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4050192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

储能系统(ess),如锂离子电池,目前正在可再生电网系统中使用,以提供电网应用运行所需的容量、功率和快速响应,包括调峰、频率调节、备用电源和电压支持。每个应用程序对ESS施加不同的占空比。这表示与能源产生和需求相关的充电/放电曲线。不同的占空比特性会对ess的性能、寿命和持续时间产生不同的影响。在锂离子电池中,存在各种化学物质,它们在比能量、功率和循环寿命方面具有不同的特征,最终决定了它们的可用性和性能。因此,表征占空比是决定如何正确设计用于电网应用的锂离子电池系统的关键。考虑到电网电池的使用依赖老化轨迹,该研究任务是研究电网电池独特老化行为的关键一步。通过优化锂离子电池在电网储能中的应用,可以实现显著的能源和成本节约,从而提高可再生电网系统的利用率。在本文中,我们提出了一种基于无监督学习和频域技术的方法来表征电网特定调峰应用的占空比。最后,我们提出了模拟电网-电池动态行为的合成占空比,用于实验室测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterization and Synthesis of Duty Cycles for Battery Energy Storage Used in Peak Shaving Dispatch
Energy storage systems (ESSs), such as lithium-ion batteries, are being used today in renewable grid systems to provide the capacity, power, and quick response required for operation in grid applications, including peak shaving, frequency regulation, back-up power, and voltage support. Each application imposes a different duty cycle on the ESS. This represents the charge/discharge profile associated with energy generation and demand. Different duty cycle characteristics can have different effects on the performance, life, and duration of ESSs. Within lithium-ion batteries, various chemistries exist that own different features in terms of specific energy, power, and cycle life, that ultimately determine their usability and performance. Therefore, the characterization of duty cycles is a key to determine how to properly design lithium-ion battery systems for grid applications. Given the usage-dependent degradation trajectories, this research task is a critical step to study the unique aging behaviors of grid batteries. Significant energy and cost savings can be achieved by the optimal application of lithium-ion batteries for grid-energy storage, enabling greater utilization of renewable grid systems. In this paper, we propose an approach, based on unsupervised learning and frequency domain techniques, to characterize duty cycles for the grid-specific peak shaving applications. Finally, we propose synthetic duty cycles to mimic grid-battery dynamic behaviors for use in laboratory testing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Some Results on the Properties of Discrete-Time LTI State-Space Systems Using Constrained Convex Optimization in Parameter Estimation of Process Dynamics with Dead Time Utilisation of Manipulator Redundancy for Torque Reduction During Force Interaction Adaptive Tracking Control of Robotic Manipulator Subjected to Actuator Saturation and Partial Loss of Effectiveness Utilisation of Manipulator Redundancy for Torque Reduction During Force Interaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1