基于混合逻辑动力学方法的混合系统建模复杂性和规模分析

Hamid Mahboubi, J. Habibi, B. Moshiri, Ali Khaki-Sedigh
{"title":"基于混合逻辑动力学方法的混合系统建模复杂性和规模分析","authors":"Hamid Mahboubi, J. Habibi, B. Moshiri, Ali Khaki-Sedigh","doi":"10.1109/MED.2006.328826","DOIUrl":null,"url":null,"abstract":"Recently, a great amount of interest has been shown in the field of modeling and control of hybrid systems. One of the efficient methods in this area utilizes the mixed logical-dynamical (MLD) systems in the modeling. In this method, the system constraints are transformed into mixed-integer inequalities by defining some logic statements. In this paper, a system containing three tanks is modeled as a nonlinear switched system using the MLD framework. Regarding this three-tank modeling, an n-tank system is modeled and number of binary and continuous auxiliary variables and also number of mixed-integer inequalities are obtained in terms of n. Then, the system size and complexity due to increase in number of tanks are considered. It is concluded that as the number of tanks increases, the system size and complexity increase exponentially which hampers control of the system. Therefore, methods should be found which result in fewer variables","PeriodicalId":347035,"journal":{"name":"2006 14th Mediterranean Conference on Control and Automation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2006-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Complexity and Size Analysis of Hybrid System Modeling with Mixed Logical Dynamical Approach\",\"authors\":\"Hamid Mahboubi, J. Habibi, B. Moshiri, Ali Khaki-Sedigh\",\"doi\":\"10.1109/MED.2006.328826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, a great amount of interest has been shown in the field of modeling and control of hybrid systems. One of the efficient methods in this area utilizes the mixed logical-dynamical (MLD) systems in the modeling. In this method, the system constraints are transformed into mixed-integer inequalities by defining some logic statements. In this paper, a system containing three tanks is modeled as a nonlinear switched system using the MLD framework. Regarding this three-tank modeling, an n-tank system is modeled and number of binary and continuous auxiliary variables and also number of mixed-integer inequalities are obtained in terms of n. Then, the system size and complexity due to increase in number of tanks are considered. It is concluded that as the number of tanks increases, the system size and complexity increase exponentially which hampers control of the system. Therefore, methods should be found which result in fewer variables\",\"PeriodicalId\":347035,\"journal\":{\"name\":\"2006 14th Mediterranean Conference on Control and Automation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 14th Mediterranean Conference on Control and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MED.2006.328826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 14th Mediterranean Conference on Control and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MED.2006.328826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

近年来,混合动力系统的建模与控制问题引起了人们极大的兴趣。该领域的一种有效方法是利用混合逻辑-动态(MLD)系统建模。该方法通过定义一些逻辑语句,将系统约束转化为混合整数不等式。本文利用MLD框架将一个包含三个储罐的系统建模为非线性切换系统。在此三罐建模中,首先对一个n罐系统进行建模,得到以n为单位的二元连续辅助变量的个数和混合整数不等式的个数,然后考虑由于罐数增加而引起的系统规模和复杂性。结果表明,随着储罐数量的增加,系统的规模和复杂性呈指数级增长,这不利于系统的控制。因此,应该找到产生较少变量的方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Complexity and Size Analysis of Hybrid System Modeling with Mixed Logical Dynamical Approach
Recently, a great amount of interest has been shown in the field of modeling and control of hybrid systems. One of the efficient methods in this area utilizes the mixed logical-dynamical (MLD) systems in the modeling. In this method, the system constraints are transformed into mixed-integer inequalities by defining some logic statements. In this paper, a system containing three tanks is modeled as a nonlinear switched system using the MLD framework. Regarding this three-tank modeling, an n-tank system is modeled and number of binary and continuous auxiliary variables and also number of mixed-integer inequalities are obtained in terms of n. Then, the system size and complexity due to increase in number of tanks are considered. It is concluded that as the number of tanks increases, the system size and complexity increase exponentially which hampers control of the system. Therefore, methods should be found which result in fewer variables
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A note on Monotone Systems with Positive Translation Invariance Recent Advances on Linear Control Theory under Communication Constraints: A Survey Optimal path and tracking control of an autonomous VTOL aircraft A Finite Time Unknown Input Observer For Linear Systems Modelling and design of the half-bridge resonant inverter for induction cooking application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1