{"title":"康复机器人的故障安全组件。反射机制和故障安全力传感器","authors":"N. Tejima, D. Stefanov","doi":"10.1109/ICORR.2005.1501141","DOIUrl":null,"url":null,"abstract":"Two components for reducing the risks associated with rehabilitation robots are proposed. First, a reflex mechanism, which is similar to the biological reflex, is proposed. The experimental results of a prototype prove its effectiveness for reducing impact force. A new reflex mechanism structure is also proposed for improving its reliability. A reflex system composed only of electrical circuits is also discussed. Second, a fail-safe force sensor is proposed, which realizes a safe force/torque feedback control for rehabilitation robots. It can be realized by various structures. Its application to autonomous wheelchairs is discussed for improving their safety and usability.","PeriodicalId":131431,"journal":{"name":"9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005.","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Fail-safe components for rehabilitation robots - a reflex mechanism and fail-safe force sensor\",\"authors\":\"N. Tejima, D. Stefanov\",\"doi\":\"10.1109/ICORR.2005.1501141\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two components for reducing the risks associated with rehabilitation robots are proposed. First, a reflex mechanism, which is similar to the biological reflex, is proposed. The experimental results of a prototype prove its effectiveness for reducing impact force. A new reflex mechanism structure is also proposed for improving its reliability. A reflex system composed only of electrical circuits is also discussed. Second, a fail-safe force sensor is proposed, which realizes a safe force/torque feedback control for rehabilitation robots. It can be realized by various structures. Its application to autonomous wheelchairs is discussed for improving their safety and usability.\",\"PeriodicalId\":131431,\"journal\":{\"name\":\"9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005.\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICORR.2005.1501141\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICORR.2005.1501141","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fail-safe components for rehabilitation robots - a reflex mechanism and fail-safe force sensor
Two components for reducing the risks associated with rehabilitation robots are proposed. First, a reflex mechanism, which is similar to the biological reflex, is proposed. The experimental results of a prototype prove its effectiveness for reducing impact force. A new reflex mechanism structure is also proposed for improving its reliability. A reflex system composed only of electrical circuits is also discussed. Second, a fail-safe force sensor is proposed, which realizes a safe force/torque feedback control for rehabilitation robots. It can be realized by various structures. Its application to autonomous wheelchairs is discussed for improving their safety and usability.