海上非对称集合搜索

Malika Meghjani, F. Shkurti, J. A. G. Higuera, A. Kalmbach, David Whitney, G. Dudek
{"title":"海上非对称集合搜索","authors":"Malika Meghjani, F. Shkurti, J. A. G. Higuera, A. Kalmbach, David Whitney, G. Dudek","doi":"10.1109/CRV.2014.31","DOIUrl":null,"url":null,"abstract":"In this paper we address the rendezvous problem between an autonomous underwater vehicle (AUV) and a passively floating drifter on the sea surface. The AUV's mission is to keep an estimate of the floating drifter's position while exploring the underwater environment and periodically attempting to rendezvous with it. We are interested in the case where the AUV loses track of the drifter, predicts its location and searches for it in the vicinity of the predicted location. We parameterize this search problem with respect to both the uncertainty in the drifter's position estimate and the ratio between the drifter and the AUV speeds. We examine two search strategies for the AUV, an inward spiral and an outward spiral. We derive conditions under which these patterns are guaranteed to find a drifter, and we empirically analyze them with respect to different parameters in simulation. In addition, we present results from field trials in which an AUV successfully found a drifter after periods of communication loss during which the robot was exploring.","PeriodicalId":385422,"journal":{"name":"2014 Canadian Conference on Computer and Robot Vision","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Asymmetric Rendezvous Search at Sea\",\"authors\":\"Malika Meghjani, F. Shkurti, J. A. G. Higuera, A. Kalmbach, David Whitney, G. Dudek\",\"doi\":\"10.1109/CRV.2014.31\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we address the rendezvous problem between an autonomous underwater vehicle (AUV) and a passively floating drifter on the sea surface. The AUV's mission is to keep an estimate of the floating drifter's position while exploring the underwater environment and periodically attempting to rendezvous with it. We are interested in the case where the AUV loses track of the drifter, predicts its location and searches for it in the vicinity of the predicted location. We parameterize this search problem with respect to both the uncertainty in the drifter's position estimate and the ratio between the drifter and the AUV speeds. We examine two search strategies for the AUV, an inward spiral and an outward spiral. We derive conditions under which these patterns are guaranteed to find a drifter, and we empirically analyze them with respect to different parameters in simulation. In addition, we present results from field trials in which an AUV successfully found a drifter after periods of communication loss during which the robot was exploring.\",\"PeriodicalId\":385422,\"journal\":{\"name\":\"2014 Canadian Conference on Computer and Robot Vision\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 Canadian Conference on Computer and Robot Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CRV.2014.31\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Canadian Conference on Computer and Robot Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2014.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文研究了自主水下航行器(AUV)与海面被动浮漂器的交会问题。AUV的任务是在探索水下环境的同时保持对浮动漂浮物位置的估计,并定期尝试与它会合。我们感兴趣的是在这种情况下,AUV失去了漂浮物的轨迹,预测了它的位置,并在预测位置附近搜索它。我们根据漂浮器位置估计的不确定性和漂浮器与AUV速度的比值对搜索问题进行了参数化。我们研究了水下机器人的两种搜索策略,向内螺旋和向外螺旋。我们推导了这些模式保证找到漂移的条件,并在模拟中对不同的参数进行了经验分析。此外,我们还介绍了现场试验的结果,其中AUV在机器人探索期间通信丢失一段时间后成功地找到了漂浮物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Asymmetric Rendezvous Search at Sea
In this paper we address the rendezvous problem between an autonomous underwater vehicle (AUV) and a passively floating drifter on the sea surface. The AUV's mission is to keep an estimate of the floating drifter's position while exploring the underwater environment and periodically attempting to rendezvous with it. We are interested in the case where the AUV loses track of the drifter, predicts its location and searches for it in the vicinity of the predicted location. We parameterize this search problem with respect to both the uncertainty in the drifter's position estimate and the ratio between the drifter and the AUV speeds. We examine two search strategies for the AUV, an inward spiral and an outward spiral. We derive conditions under which these patterns are guaranteed to find a drifter, and we empirically analyze them with respect to different parameters in simulation. In addition, we present results from field trials in which an AUV successfully found a drifter after periods of communication loss during which the robot was exploring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MDS-based Multi-axial Dimensionality Reduction Model for Human Action Recognition Direct Matrix Factorization and Alignment Refinement: Application to Defect Detection Towards Full Omnidirectional Depth Sensing Using Active Vision for Small Unmanned Aerial Vehicles An Integrated Bud Detection and Localization System for Application in Greenhouse Automation Trinocular Spherical Stereo Vision for Indoor Surveillance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1