基于写入优化和一致性rdma的非易失性主存系统

Xinxin Liu, Yu Hua, Xuan Li, Qifan Liu
{"title":"基于写入优化和一致性rdma的非易失性主存系统","authors":"Xinxin Liu, Yu Hua, Xuan Li, Qifan Liu","doi":"10.1109/ICCD53106.2021.00048","DOIUrl":null,"url":null,"abstract":"To deliver high performance in cloud computing, many efforts leverage RDMA (Remote Direct Memory Access) in networking and NVMM (Non-Volatile Main Memory) in end systems. Due to no CPU involvement, one-sided RDMA becomes efficient to access the remote memory, and NVMM technologies have the strengths of non-volatility, byte-addressability and DRAM-like latency. However, due to the need to guarantee Remote Data Atomicity (RDA), the synergized scheme has to consume extra network round-trips, remote CPU participation and double NVMM writes. In order to address these problems, we propose a write-optimized log-structured NVMM design for Efficient Remote Data Atomicity, called Erda. In Erda, clients directly transfer data to the destination memory addresses in the logs on servers via one-sided RDMA writes without redundant copies and remote CPU consumption. To detect the atomicity of the fetched data, we verify a checksum without client-server coordination. We further ensure metadata consistency by leveraging an 8-byte atomic update in a hash table, which also contains the addresses of previous versions of data in the log for consistency. When a failure occurs, the server properly and efficiently restores to become consistent. Experimental results show that compared with state-of-the-art schemes, Erda reduces NVMM writes approximately by 50%, significantly improves throughput and decreases latency.","PeriodicalId":154014,"journal":{"name":"2021 IEEE 39th International Conference on Computer Design (ICCD)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Write-Optimized and Consistent RDMA-based Non-Volatile Main Memory Systems\",\"authors\":\"Xinxin Liu, Yu Hua, Xuan Li, Qifan Liu\",\"doi\":\"10.1109/ICCD53106.2021.00048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To deliver high performance in cloud computing, many efforts leverage RDMA (Remote Direct Memory Access) in networking and NVMM (Non-Volatile Main Memory) in end systems. Due to no CPU involvement, one-sided RDMA becomes efficient to access the remote memory, and NVMM technologies have the strengths of non-volatility, byte-addressability and DRAM-like latency. However, due to the need to guarantee Remote Data Atomicity (RDA), the synergized scheme has to consume extra network round-trips, remote CPU participation and double NVMM writes. In order to address these problems, we propose a write-optimized log-structured NVMM design for Efficient Remote Data Atomicity, called Erda. In Erda, clients directly transfer data to the destination memory addresses in the logs on servers via one-sided RDMA writes without redundant copies and remote CPU consumption. To detect the atomicity of the fetched data, we verify a checksum without client-server coordination. We further ensure metadata consistency by leveraging an 8-byte atomic update in a hash table, which also contains the addresses of previous versions of data in the log for consistency. When a failure occurs, the server properly and efficiently restores to become consistent. Experimental results show that compared with state-of-the-art schemes, Erda reduces NVMM writes approximately by 50%, significantly improves throughput and decreases latency.\",\"PeriodicalId\":154014,\"journal\":{\"name\":\"2021 IEEE 39th International Conference on Computer Design (ICCD)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 39th International Conference on Computer Design (ICCD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCD53106.2021.00048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 39th International Conference on Computer Design (ICCD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCD53106.2021.00048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了在云计算中提供高性能,许多工作在网络中利用RDMA(远程直接内存访问),在终端系统中利用NVMM(非易失性主内存)。由于不涉及CPU,单侧RDMA访问远程内存变得高效,NVMM技术具有非易失性、字节寻址性和类似dram的延迟的优势。然而,由于需要保证远程数据原子性(RDA),协同方案必须消耗额外的网络往返、远程CPU参与和双重NVMM写入。为了解决这些问题,我们提出了一种写优化的日志结构NVMM设计,用于高效远程数据原子性,称为Erda。在Erda中,客户端通过单侧RDMA写入直接将数据传输到服务器日志中的目标内存地址,而不需要冗余副本和远程CPU消耗。为了检测所获取数据的原子性,我们在没有客户机-服务器协调的情况下验证校验和。我们通过利用哈希表中的8字节原子更新进一步确保元数据的一致性,哈希表还包含日志中以前版本数据的地址,以保持一致性。当发生故障时,服务器可以正确有效地恢复到一致状态。实验结果表明,与最先进的方案相比,Erda将NVMM写入减少了大约50%,显着提高了吞吐量并降低了延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Write-Optimized and Consistent RDMA-based Non-Volatile Main Memory Systems
To deliver high performance in cloud computing, many efforts leverage RDMA (Remote Direct Memory Access) in networking and NVMM (Non-Volatile Main Memory) in end systems. Due to no CPU involvement, one-sided RDMA becomes efficient to access the remote memory, and NVMM technologies have the strengths of non-volatility, byte-addressability and DRAM-like latency. However, due to the need to guarantee Remote Data Atomicity (RDA), the synergized scheme has to consume extra network round-trips, remote CPU participation and double NVMM writes. In order to address these problems, we propose a write-optimized log-structured NVMM design for Efficient Remote Data Atomicity, called Erda. In Erda, clients directly transfer data to the destination memory addresses in the logs on servers via one-sided RDMA writes without redundant copies and remote CPU consumption. To detect the atomicity of the fetched data, we verify a checksum without client-server coordination. We further ensure metadata consistency by leveraging an 8-byte atomic update in a hash table, which also contains the addresses of previous versions of data in the log for consistency. When a failure occurs, the server properly and efficiently restores to become consistent. Experimental results show that compared with state-of-the-art schemes, Erda reduces NVMM writes approximately by 50%, significantly improves throughput and decreases latency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Smart-DNN: Efficiently Reducing the Memory Requirements of Running Deep Neural Networks on Resource-constrained Platforms CoRe-ECO: Concurrent Refinement of Detailed Place-and-Route for an Efficient ECO Automation Accurate and Fast Performance Modeling of Processors with Decoupled Front-end Block-LSM: An Ether-aware Block-ordered LSM-tree based Key-Value Storage Engine Dynamic File Cache Optimization for Hybrid SSDs with High-Density and Low-Cost Flash Memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1